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Vertical Land Motion
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. . * Source: NASA Earth Observatory

https://earthobservatory.nasa.gov/images/14743
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Causes of VLM

. Plate tectonics

. Glacial Isostatic Adjustment (GIA)
. Bolide impacts

. Sedimentary processes
. Subsurface fluid withdrawal



Plate Tectonics

normal fault @™ direction
(dip-slip fault) ‘ sk

reverse fault
(dip-slip fault)

http://blackpoolsixthasgeography.pbworks.com/w/page/23285268/Tectonic%20Uplift



Glacial Isostatic Adjustment (GIA)
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Bolide Impact in the Chesapeake Bay
ZUSGS

o science for a changing world
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USGS Circular 1262, Barlow, 2003

Michael Hall, The Virginian-Pilot, June 25,2001 7



Sediment Compaction

THE DELTA TODAY

A FEW THOUSAND
YEARS AGO

Credit: Zina Deretsky, National Science Foundation



Subsurface Fluid Withdrawal

Virginia Extensometer Network
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https://va.water.usgs.gov/geonarratives/va-subsidence-geonarrative/

Subsurface Fluid Withdrawal

« Potomac Aquifer historically flowed
freely to the surface (artesian)

» Primary regional groundwater source

* Extraction shrinks space between
sediments grains

0% 4
<o 1

Water Pressure

USGS Public Domain

Aquifer-System Compaction (ASC)

A. Before pumping B. After pumping

Land
Monitoring subsidence

well ™~

Land surface
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Eggleston and Pope, 2013 after Galloway and others, 1999




Groundwater levels and VLM across the VACP

groundwater level decline (1900-2008)
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Vertical Land Motion and Sea-Level Rise
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Sea Level Rise without Vertical Land Motion

Tide Gauge
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Sea Level Rise with Vertical Land Motion

Tide Gauge RSLR =SLR + VLM
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Z
Relative Sea Level
Rise (RSLR) today

varies depending on
your specific location

© <3.4 mmyrt
3.4to 4 mm yrt
® © 4to4.2 mmyr!
® :2-5mm yri

O
O >5 mmyr?

® \""/
Source:https://tidesandcurrents.noaa.gov/sltrends/sltrends.html v

16



https://tidesandcurrents.noaa.gov/sltrends/sltrends.html

Meters

NOAA’s National Geodetic Survey Positioning America for the Future geodesy.noaa.gov

Relative Sea Level Trend
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8570283 Ocean City, Maryland 6.05 +/- 0.73 mm/yr
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Meters

NOAA’s National Geodetic Survey Positioning America for the Future geodesy.noaa.gov
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NOAA’s National Geodetic Survey Positioning America for the Future geodesy.noaa.gov

Global Sea-Level Rise

Global Sea-Level Rise rate depends on time scale of computation!
1901-1990 (90 yrs): 1.4 mm yr
1970-2015 (45 yrs): 2.1 mmyrt A

1993-2015 (22 yrs): 3.2 mmyr! A

IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Portner, D.C. Roberts, V. Masson-Delmotte, P.
Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegria, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge

University Press, Cambridge, UK and New York, NY, USA, 755 pp. https://doi.org/10.1017/9781009157964. 19
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Quantifying VLM

* Borehole Extensometers: California, Texas, Virginia

* Geodetic Surveying
* GNSS: Continuous or discrete
* Differential Leveling

* Analyses of long-term tide gauges

* Remote Sensing
* Synthetic Aperture Radar (SAR)
* InSAR
* NiSAR (2024)

Aquc.r-system thickness at one location, Yes Low e
continuous record

Borehole extensometer

Sea elevation at one location, continuous

Tidal station record No Low High

. . Land elevations at one or several locations, .
Geodetic surveying e No Low to moderate  Low to high
Remote sensing (InSAR) Land elevations over a wide area, at No High Moderate

multiple times




Borehole Extensometer
Research Overview

Holdahl and Morrison, 1974 (NOAA)
® Primary source for regional land subsidence rates (1940’s to 1970’s)
—  ~ 2.0 mm/yr. throughout Hampton Roads

— largest rates occurring in West Point at -3.2 mm/yr. and Franklin at -4.4 mm/yr.

USGS Borehole Extensometers

° Franklin and Suffolk established in response to Holdahl and Morrison
study

— Active late 1970’s through mid 1990's

Need new baseline

USGS Borehole Extensometers
® Franklin and Suffolk reactivated in 2016
- In cooperation with VA Department of Environmental Quality (DEQ)
® Nansemond installed in 2018 at the Nansemond Treatment Plant
- In cooperation with Hampton Roads Sanitation District (HRSD)

®  West Point planned for installation in 2023 in cooperation with DEQ
Global Navigation Satellite Systems (GNSS)

®  New baseline study utilizing modern geodetic surveying techniques on
passive/discrete benchmark monitoring networks

_Holdahl and Morrison, 19_74
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The Virginia Extensometer Network

ZUSGS WA USGS GO\

'U.5. Geological

Pictured: Nansemond Extensometer at HRSD’s Sustainable Water Initiative for Tomorrow (SWIFT). Source: USGS, Public Domain




Extensometers and land motion

- . e

Compaction recorder . .
Tensioner to overcome Aquifer System Compaction
friction between

Steel tape :
................... extensometer pipe and
""""" well casing
Steel table

m

Land SU(face

—_

“***Extensometer pipe

Table anchored
to surface soil

poos

“Well casing

Layered aquifer system

Bottom of extensometer pipe
" anchored to bedrock

Bedrock V)

Eggleston and Pope, 2013 USGS, Public Domain



Virginia Extensometer Network
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How Deep Do We Drill?

USGS borehole extensometers extend from the land
surface all the way down to the basement rock at the
bottom of the aquifers they are monitoring. These
boreholes can be hundreds to thousands of feet deep!

This graphic shows how deep three of our
extensometers on the Virginia Coastal Plain
extend into the ground by comparing them to
the heights of some of North America’s tallest

_Depth:500fthls_ _ _ _|
(below land surface)

Depth: 1000 ft bis

Depth: 2000 ft bls

Extensometer Surface
Instrumentation

USGS, Public Domain




Franklin extensometer

Period of record

— 1979-1995; 2016-
present

Depth
— 866 ft. bls

Location significance

— proximal to major
pumping center

=




Franklin extensometer

. Period of record

— 1979-1995; 2016-
present

- Depth
— 866 ft. bls

- Location significance

— proximal to major
pumping center




Franklin extensometer

* Period of record
— 1979-1995; 2016-present

e Depth
— 866 ft. bls

* Location significance

— proximal to major pumping
center

e Cumulative compaction

— 1979-95: 24.2 mm
® 1.5mm/yr

Preliminary Information-Subject to Revision. Not for Citation or
Distribution.

Franklin compaction: 1979-95; 2016-
present
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Global Navigation Satellite Systems (GNSS)

e 6 major GNSS systems: GPS
(USA), GLONASS (Russia),
GALILEO (European), BeiDou oee

GLONASS

(China), QZSS (Japan), IRNSS
(lnd|a) Qzss

e Major transmission signals from
all GNSS in the L frequency band
(1-2 GHz), but with slightly
different frequencies




Global Navigation Satellite Systems (GNSS)

o GNSS satellites orbit between
25,000 - 40,000 km away from
the Earth’s surface GPS

GLONASS

o All GNSS systems have 3
segments: control, user, and
satellite

o 4 satellites need for a position to
solve for X,Y,Z, and time

MULTI-GNSS




Continuous vs. Episodic/Campaign GNSS/GPS Observations

Continuous GNSS/GPS Observations Episodic/Campaign GNSS/GPS Observations

e Continuously observing e Short observation periods (>=72 hrs
e Ideally long-time series for millimeter precision positions)
e Permanent or semi-permanent e Repeated observations

installations

® Benchmarks are observed




The monumentation comes in many different styles.

Continuous GPS Observations Episodic/Campaign GPS Observations
Continuously observing e Short observation periods (272 hrs
Ideally long-time series for millimeter precision positions)
Permanent or semi-permanent e Repeated observations
installations ® Benchmarks are observed

32



Pseudorange vs. Phase Observables for Positioning

Using the pseudorange allows for instantaneous positions with large uncertainties
(1 meter precision at best).

\©~ '®O Y 4

R4
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Pseudorange vs. Phase Observables for Positioning

Using the phase of the GNSS signals gets you millimeter precision, but requires advanced
post-processing of data using codes like OPUS projects or GAMIT-GLOBK.
0y ‘e o
R4
-
N

34



Error Budget for GNSS Observations

Satellite:
e clocks
e Orbits

Satellite-Receiver clocks = 1 m
Satellite ephemeris =1 m ."'

.': Signal propagation:
Troposphere =1 m i e lonospheric refraction

'." e Tropospheric refraction

lonosphere =5 m
Receiver/antenna:

Ant. phase center variations
Multipath

[ }
e Clock
e Electronic noise

Phase center variations =1 cm :

Multipath = 0.5 m

Pseudorange noise = 1 m
Operator errors: up to several km...

Phase noise <1 mm
Dominant error sources:

e lonospheric refraction




Best practices for mm-precision

* Given time and personnel constraints, what are the trade-offs between
between spatial and temporal density of campaign observations?

* Ideally, you would like for the white noise position uncertainty for an
occupation to contribute to the velocity uncertainty at a level less than
the usually dominant long-period correlated noise.

* Typical white noise uncertainties (horizontal and vertical) as a function
of occupation time are:
— 6-8 hrs: 2-2.5 mm (H), 5-10 mm (V)
— 12-24 hrs: 1.0-1.5 mm (H), 3-5 mm (V)
— 36—-48-hrs: 0.7-1.0 mm (H), 2—4 mm (V)

MIT+



Precision of Post-Processed GPS

Vertical Precision (GAMIT/GLOBK) Vertical & Horizontal Precision (OPUS)
0

vertical RMS:ﬂ 1.0

25 _ ~T horizontal RMS=F
20 B

2'0__ .....................................................................................................................

A I U ) S

10 o T T

=

s ‘ | B 5.5 Y N U s e

L R R RERERE —

16 refs 12 refs B refs 4 refs 3 refs 2 refs 2 4 6 8 10 12 14 16 18 20 22 24

- 1 he 2 hr 3 he 6 hr 12 hr - 24 hr Session Duration (T,hours)

GPS/GNSS Reference Stations typically called “CORS” (Continuously Operating GNSS Reference Stations)
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MIT+

Best practices for mm-precision

> 72 hours GPS time (> 5 days best for mm precision)
Run temporary CORS if in a low-CORS density environment

No need for simultaneous GPS occupations if in a high-density CORS
environment

Use survey-grade L1/L2 GPS antennas & receivers

Calibrated tripods

Antennas pointed North

Avoid obstructions & multipath

For repeat observations, observe at same time of year

Use L1/L2 post-processing software (e.g. GAMIT/GLOBK, OPUS, etc.)
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VLM impacts to coastal management

. Blackwater National Wildlife Refuge

. Hampton Roads pilot project

. Chesapeake Bay Regional Subsidence
Monitoring Study



Research Goals

Method Development

* (Can utilization of these relatively inexpensive
campaign style GNSS techniques get an estimate of
VLM rates to help better manage flooding, storm
surge, land/habitat loss, etc.?

* How can these methods be expanded into areas
outside of our sample?

* How can these data be used in ground truthing of
remotely sensed information products?

Explain Variability in VLM Rates

* Can these methods be used to influence local land use
decisions rather than implement a statewide or
federal one-size-fits-all strategy

* What do individual local communities see as
important?

y oL gl : §
GNSS Occupation on 84TB adjacent to Fort McHenry - Oct.
2021 (Photo Credit: Heather Quinn — MGS)
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Historic wetland losses in
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2
Relative Sea Level
Rise (RSLR) today

varies depending on
o ' P your specific location

<3.4 mmyrt
3.4to 4 mm yrt
® 4to 4.2 mm yr?

° O 4.2 -5mmyr?
O >5 mmyr?

© \""/
Source:https://tidesandcurrents.noaa.gov/sltrends/sltrends.html v



https://tidesandcurrents.noaa.gov/sltrends/sltrends.html

Sea-Level trend at Cambridge MD

Meters
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Adaptive Management:

Prescriptive burning to promote marsh productivity




RESEARCH SUPPORTING SDUND DECISIONS

Results from
vEire Scicnre

over 100 SET
plots

* No clear trend among fire treatments

H * Qverall rates of wetland elevation
AburnedmarshplotinBIackwaterNat{ona\V\mdllfeRefuge, Mary!and,wdh Change positive 7 mm yr-l

equipment for collecting an accretion core from a marker horizon

Thumbs Up or Down to Annual Burning 1 1
e il it * Elevation Capital deemed best

— indicator of resilience

Currently land managers at Blackwater National Wildlife Refuge on the Eastern Shore of Maryland annually burn most
of the marsh as a way to enhance wildlife habitat, promote habitat for rare and threatened plant species, and avoid

hazardous buildups of fuel. However, it was unclear how this regimen affects the elevation of the marsh and marsh ® R e C 0 m m e n d a t i O n t O m O n it O r

sustainability. This research attempted to answer those questions, which are critical in light of expected future sea-level
rise. The method used allowed the scientists to measure marsh surface accretion (building) and elevation trends, and

. o s s )
to determine the separate influence of surface and subsurface processes on marsh elevation change. Annual burning I t l t t /
proved to have a less negative effect on factors influencing marsh vertical development than did no burning, a 3-5 e eva I 0 n S e e Va Ion Capl a
year burn cycle, or a 7-10 year burn cycle. The scientists caution that these results are not transferable to other places
because of the unique hydrology of the area. They note that in the adjacent state-owned marsh, the results would
likely be vastly different. They also note that this is a short-term study covering only three fire seasons and two growing t ro u g O u t re u g e

seasons, and that the long-term results of the longer burn cycles will not be clear for another 30 years or so.

Fire Science Brief Issue 134 May 2011 Page 1 www.firescience.gov



SET stations within Blackwater NWR

Very clustered distribution
Small area sampled despite large # SET sample stations




Single Base RTK GPS campaign (2010-2012)

Two rovers, matching
Trimble R8'’s

Per 2005 Base on known point:
Height/ 38 24 27.81686 (N)
Mod 076 03 02.20737 (W)

campaign NAVD 88 022 (m)


http://navd88/

mRTK mSET
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What's going on?
Wetlands are gaining elevation at ~6 mm yr

SLR at Cambridge MD is 3.5 mm yr-



The geodetic control marks are moving vertically too!

Mark A Northing (m A Easting (m A Ellipsoid Ht (m
PS.hased g (m) g (m) | A Ellipsoid Ht (m)
coordinate | Boat Ramp -0.002 -0.023 -0.043\t 0.007 (P=0.099)
comparisons | Refuge 2 -0.007 -0.005 -0.061 }+ 0.007 (P=0.07)
2005 - 2015 Wolf Pi
olf Pit -0.011 -0.006 -0.069/+ 0.007 (P=0.062)
N 4




The geodetic control marks are moving vertically too!

Mark A Northing (m A Easting (m) | A Ellipsoid Ht (mm/yr
PS.hased g (m) g (m) (mmiy)
coordinate | Boat Ramp -0.002 -0.023 4.4 §0.7(P=0.099)
comparisons | Refuge 2 -0.007 -0.005 -6.51, 0.7 (P=0.07)
2005 - 2015 i pi

Wolf Pit -0.011 -0.006 -7.1,!0.7(P=0.062)

A 4



Conclusions from Blackwater NWR

Blackwater: Refuge 2
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Conclusions from Blackwater

- Wetland vertical dynamics need to take into account
VLM occurring below the reference marks

- The nearest long-term tide station may not be in the
same VLM environment as your area of interest

. Episodic GPS/GNSS measurements can, over time,
provide very good estimates of VLM at the mm/yr scale



Ellipsoid Height (m)

-34.76

-34.77

-34.78

-34.79

-34.8

-34.81

-34.82

-34.83

-34.84

1/14/2004

Monitoring coastal VLM with GPS:
Assateague Island National Seashore

y =-0.006x - 34.77

/ R?=0.7772
/

6 mmyr?

10/10/2006 7/6/2009 4/1/2012 12/27/2014
Date

Unverified National Park Service Data; Credit: Neil Winn, National Park Service



Hampton Roads
Benchmark Network

3-D Deep Rod Installation at Jamestown, VA

s

=7s = {11!

Project Objectives

1) Establish a network of Class B, or greater
Original Holdahl and Morrison marks were attempted to be
recovered, but none could be found
— Beenin place for a minimum of 20 years
— Suitable for GNSS surveying
— Remaining gaps filled with deep rod installations
®*  Final Network Configuration: 26 benchmarks
— 4 subsidence piers (NASA LaRC)
— 6 concrete surface monuments of importance
— 16 deep rods
2) Occupy the benchmarks with GNSS
®*  Annual campaigns consisting of > 24-hour : i

deployments : "
O Wi . f d | . Methods from: “Attachment V: Setting an NGS 3D Monu
Inter timeframe to reduce seasonal noise National Geodetic Survey. September 30, 2004, Updated October 27, 2009

i

i I aiovae
ment” by:




Project Objectives Cont.

3) Compute land relative differences
USGS ScienceBase Data Release:
- RINEX files

- CSV with benchmark/survey information and computed ellipsoid
heights in ITRF2014

- Metadata
Data Processing in OPUS-Projects

- Piecewise linear with normal constraints

- HUB: VAGP (2007) -centrally located and within 100 km
- Constrained CORS: CORB, DED2, LS03, NCCR, NCJA

- TROPO: vary year to year

- *In 2018 VAGP was not available so LS03 was used

How much does the CORS
network configuration
affect results?

Benchmark Velocities
2018 to 2022
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Chesapeake Bay Vertical Land Motion Network
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Chesapeake
Bay Network

* 62 survey marks monitored
yearly (October) since 2019

* Chesapeake Bay, Delaware Bay
» Atlantic Barrier Islands, Delmarva
peninsula, Coastal Plain,

Piedmont

« Variety of monumentation types



QUESTIONS?
Thank you!

Philippe Hensel, NGS, philippe.hensel@noaa.gov

D. Sarah Stamps, Virginia Tech, dstamps@vt.edu
Jim Duda, USGS, jimduda@usgs.gov
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