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Outline

• What is Vertical Land Motion (VLM)?
• VLM and sea-level rise
• Techniques to estimate VLM
• Exploring VLM impacts to coastal 

management

2

P



Vertical Land Motion
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Source: NASA Earth Observatory
https://earthobservatory.nasa.gov/images/14743
6/taking-a-measure-of-sea-level-rise-land-motion
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Causes of VLM

• Plate tectonics
• Glacial Isostatic Adjustment (GIA)
• Bolide impacts
• Sedimentary processes
• Subsurface fluid withdrawal
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Plate Tectonics

http://blackpoolsixthasgeography.pbworks.com/w/page/23285268/Tectonic%20Uplift
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Glacial Isostatic Adjustment (GIA)

Karegar, M. A., T. H. Dixon, and S. E. Engelhart (2016), Subsidence 
along the Atlantic Coast of North America: Insights from GPS and late 
Holocene relative sea level data, Geophys. Res. Lett., 43, 3126–3133

Source: 
https://www.vims.edu/research/products/slrc/compare/west_co
ast/index.php
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Bolide Impact in the Chesapeake Bay

7Michael Hall, The Virginian-Pilot, June 25,2001

USGS Circular 1262, Barlow, 2003 
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Sediment Compaction

Credit: Zina Deretsky, National Science Foundation
8

S



12

Subsurface Fluid Withdrawal

https://va.water.usgs.gov/geonarratives/va-subsidence-geonarrative/

Credit: Figueroa-Miranda et al. 2018

J

https://va.water.usgs.gov/geonarratives/va-subsidence-geonarrative/


Subsurface Fluid Withdrawal

USGS Public Domain

• Potomac Aquifer historically flowed 
freely to the surface (artesian) 

• Primary regional groundwater source 

• Extraction shrinks space between 
sediments grains  

Eggleston and Pope, 2013 after Galloway and others, 1999

Aquifer-System Compaction (ASC)
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Groundwater levels and VLM across the VACP
groundwater level decline (1900-2008) land elevation change (1940-1971)
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Vertical Land Motion and Sea-Level Rise

Eggleston and Pope, 2013

Relative Sea-Level Rise = Sea-Level Rise + Vertical Land Motion

RSLR = SLR + VLM
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Relative Sea Level 
Rise (RSLR) today 
varies depending on 
your specific location

Source:https://tidesandcurrents.noaa.gov/sltrends/sltrends.html
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Rapid Coastal Change
• Local rates will vary

Source: https://tidesandcurrents.noaa.gov/sltrends/sltrends.html 17

+46 cm (1 ½ ft) by 2100 at today’s rate

P

https://tidesandcurrents.noaa.gov/sltrends/sltrends.html


Source: https://tidesandcurrents.noaa.gov/sltrends/sltrends.html 18
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Global Sea-Level Rise
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• Borehole Extensometers: California, Texas, Virginia

• Geodetic Surveying
• GNSS: Continuous or discrete
• Differential Leveling

• Analyses of long-term tide gauges

• Remote Sensing
• Synthetic Aperture Radar (SAR)
• InSAR
• NiSAR (2024)

Quantifying VLM
J



Borehole Extensometer 
Research Overview

Holdahl and Morrison, 1974 (NOAA)
• Primary source for regional land subsidence rates (1940’s to 1970’s)

– ~ 2.0 mm/yr. throughout Hampton Roads

– largest rates occurring in West Point at -3.2 mm/yr. and Franklin at -4.4 mm/yr.

USGS Borehole Extensometers

• Franklin and Suffolk established in response to Holdahl and Morrison 
study
– Active late 1970’s through mid 1990’s

USGS Borehole Extensometers

• Franklin and Suffolk reactivated in 2016 
– In cooperation with VA Department of Environmental Quality (DEQ)

• Nansemond installed in 2018 at the Nansemond Treatment Plant
– In cooperation with Hampton Roads Sanitation District (HRSD)

• West Point planned for installation in 2023 in cooperation with DEQ

Global Navigation Satellite Systems (GNSS)

• New baseline study utilizing modern geodetic surveying techniques on 
passive/discrete benchmark monitoring networks

Need new baseline
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The Virginia Extensometer Network

Pictured: Nansemond Extensometer at HRSD’s Sustainable Water Initiative for Tomorrow (SWIFT). Source: USGS, Public Domain
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Extensometers and land motion

Eggleston and Pope, 2013 USGS, Public Domain 
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Virginia Extensometer Network

Eggleston and Pope, 2013
USGS, Public Domain 
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Franklin extensometer

• Period of record
– 1979-1995; 2016-

present

• Depth
– 866 ft. bls

• Location significance
– proximal to major 

pumping center
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Franklin extensometer

• Period of record
– 1979-1995; 2016-

present

• Depth
– 866 ft. bls

• Location significance
– proximal to major 

pumping center

BEFORE

AFTER

cross section

aerial view



• Period of record
– 1979-1995; 2016-present

• Depth
– 866 ft. bls

• Location significance
– proximal to major pumping 

center

• Cumulative compaction
– 1979-95: 24.2 mm 

• 1.5 mm/yr

7

Franklin extensometer
cross section

aerial view

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

J-79J-81J-83J-85J-87J-89J-91J-93J-95J-97J-99J-01J-03J-05J-07J-09J-11J-13J-15J-17J-19J-21

C
u

m
u

la
ti

v
e
 c

o
m

p
a
c
ti

o
n

 (
m

m
)

Time

Franklin compaction: 1979-95; 2016-
present

Preliminary Information-Subject to Revision. Not for Citation or 

Distribution.

no data

1995-2016

J



29

Global Navigation Satellite Systems (GNSS)

● 6 major GNSS systems: GPS 
(USA), GLONASS (Russia), 
GALILEO (European), BeiDou 
(China), QZSS (Japan), IRNSS 
(India)

● Major transmission signals from 
all GNSS in the L frequency band 
(1-2 GHz), but with slightly 
different frequencies

S
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● GNSS satellites orbit between 
25,000 - 40,000 km away from 
the Earth’s surface

● All GNSS systems have 3 
segments: control, user, and 
satellite

● 4 satellites need for a position to 
solve for X,Y,Z, and time

Global Navigation Satellite Systems (GNSS)S
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Continuous vs. Episodic/Campaign GNSS/GPS Observations

Continuous GNSS/GPS Observations Episodic/Campaign GNSS/GPS Observations

● Continuously observing 
● Ideally long-time series
● Permanent or semi-permanent 

installations

● Short observation periods (>=72 hrs 
for millimeter precision positions)

● Repeated observations 
● Benchmarks are observed

S
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The monumentation comes in many different styles.

Continuous GPS Observations Episodic/Campaign GPS Observations

● Continuously observing 
● Ideally long-time series
● Permanent or semi-permanent 

installations

● Short observation periods (≥72 hrs
for millimeter precision positions)

● Repeated observations 
● Benchmarks are observed

S
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Pseudorange vs. Phase Observables for Positioning
Using the pseudorange allows for instantaneous positions with large uncertainties 

(1 meter precision at best). 

S
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Pseudorange vs. Phase Observables for Positioning
Using the phase of the GNSS signals gets you millimeter precision, but requires advanced 

post-processing of data using codes like OPUS projects or GAMIT-GLOBK. 

S



Error Budget for GNSS Observations

35

Satellite-Receiver clocks ≈ 1 m

Satellite ephemeris ≈ 1 m

Troposphere ≈ 1 m

Ionosphere ≈ 5 m

Phase center variations ≈ 1 cm

Multipath ≈ 0.5 m

Pseudorange noise ≈ 1 m

Phase noise < 1 mm

Satellite:
● clocks
● orbits

Signal propagation:
● Ionospheric refraction
● Tropospheric refraction

Receiver/antenna:
● Ant. phase center variations
● Multipath
● Clock
● Electronic noise

Operator errors: up to several km…

Dominant error sources:
● Ionospheric refraction

S



Best practices for mm-precision

• Given time and personnel constraints, what are the trade-offs between 
between spatial and temporal density of campaign observations?

• Ideally, you would like for the white noise position uncertainty for an 
occupation to contribute to the velocity uncertainty at a level less than 
the usually dominant long-period correlated noise.

• Typical white noise uncertainties (horizontal and vertical) as a function 
of occupation time are:
– 6–8 hrs: 2–2.5 mm (H), 5–10 mm (V)
– 12–24 hrs: 1.0–1.5 mm (H), 3–5 mm (V)
– 36–48-hrs: 0.7–1.0 mm (H), 2–4 mm (V)

36MIT+

S



Precision of Post-Processed GPS

37

Vertical Precision (GAMIT/GLOBK) Vertical & Horizontal Precision (OPUS)

GPS/GNSS Reference Stations typically called “CORS” (Continuously Operating GNSS Reference Stations)

S



Best practices for mm-precision

• ≥ 72 hours GPS time (≥ 5 days best for mm precision)

• Run temporary CORS if in a low-CORS density environment

• No need for simultaneous GPS occupations if in a high-density CORS 
environment

• Use survey-grade L1/L2 GPS antennas & receivers

• Calibrated tripods

• Antennas pointed North

• Avoid obstructions & multipath

• For repeat observations, observe at same time of year

• Use L1/L2 post-processing software (e.g. GAMIT/GLOBK, OPUS, etc.)

38MIT+
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Outline

• What is Vertical Land Motion (VLM)?
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• Techniques to estimate VLM
• Exploring VLM impacts to coastal 

management
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VLM impacts to coastal management

• Blackwater National Wildlife Refuge
• Hampton Roads pilot project
• Chesapeake Bay Regional Subsidence 

Monitoring Study

40
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Research Goals

Method Development
• Can utilization of these relatively inexpensive 

campaign style GNSS techniques get an estimate of 
VLM rates to help better manage flooding, storm 
surge, land/habitat loss, etc.?

• How can these methods be expanded into areas 
outside of our sample?

• How can these data be used in ground truthing of 
remotely sensed information products?

Explain Variability in VLM Rates
• Can these methods be used to influence local land use 

decisions rather than implement a statewide or 
federal one-size-fits-all strategy

• What do individual local communities see as 
important?

GNSS Occupation on 84TB adjacent to Fort McHenry - Oct. 

2021 (Photo Credit: Heather Quinn – MGS)

P



Historic wetland losses in 
Blackwater

Cambridge, MD
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Historic wetland losses in 
Blackwater

1938 1974 1989
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Relative Sea Level 
Rise (RSLR) today 
varies depending on 
your specific location

Source:https://tidesandcurrents.noaa.gov/sltrends/sltrends.html
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Sea-Level trend at Cambridge MD
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Adaptive Management: 

Prescriptive burning to promote marsh productivity
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Results from 
over 100 SET 

plots
• No clear trend among fire treatments

• Overall rates of wetland elevation 
change positive 7 mm yr-1

• Elevation Capital deemed best 
indicator of resilience

• Recommendation to monitor 
elevations (“elevation capital”) 
throughout refuge

P



SET stations within Blackwater NWR

Very clustered distribution
Small area sampled despite large # SET sample stations

P



Base on known point:
38 24 27.81686 (N)
076 03 02.20737 (W)
NAVD 88 0.22 (m)

Two rovers, matching 
Trimble R8’s

Single Base RTK GPS campaign (2010-2012)

Per 2005 
Height 
Mod 
campaign

P

http://navd88/


Slope < 0 mm yr-1

0 ≤ slope ≥ 6 mm yr-1

6 mm yr-1 < slope

P



What’s going on?

Wetlands are gaining elevation at ~6 mm yr-1

SLR at Cambridge MD is 3.5 mm yr-1

P



The geodetic control marks are moving vertically too!

Mark Δ Northing (m) Δ Easting (m) Δ Ellipsoid Ht (m)

Boat Ramp -0.002 -0.023 -0.043 ± 0.007 (P=0.099)

Refuge 2 -0.007 -0.005 -0.061 ± 0.007 (P=0.07)

Wolf Pit -0.011 -0.006 -0.069 ± 0.007 (P=0.062)

GPS-based 

coordinate 

comparisons 

2005 - 2015

P



The geodetic control marks are moving vertically too!

Mark Δ Northing (m) Δ Easting (m) Δ Ellipsoid Ht (mm/yr)

Boat Ramp -0.002 -0.023 -4.4 ± 0.7 (P=0.099)

Refuge 2 -0.007 -0.005 -6.5 ± 0.7 (P=0.07)

Wolf Pit -0.011 -0.006 -7.1 ± 0.7 (P=0.062)

GPS-based 

coordinate 

comparisons 

2005 - 2015

P



Conclusions from Blackwater NWR
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Conclusions from Blackwater

• Wetland vertical dynamics need to take into account 
VLM occurring below the reference marks

• The nearest long-term tide station may not be in the 
same VLM environment as your area of interest

• Episodic GPS/GNSS measurements can, over time, 
provide very good estimates of VLM at the mm/yr scale
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Monitoring coastal VLM with GPS: 
Assateague Island National Seashore

Unverified National Park Service Data; Credit: Neil Winn, National Park Service
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Hampton Roads 
Benchmark Network

Project Objectives
1) Establish a network of Class B, or greater
Original Holdahl and Morrison marks were attempted to be 
recovered, but none could be found 

– Been in place for a minimum of 20 years
– Suitable for GNSS surveying
– Remaining gaps filled with deep rod installations

• Final Network Configuration: 26 benchmarks
– 4 subsidence piers (NASA LaRC)
– 6 concrete surface monuments of importance
– 16 deep rods

2) Occupy the benchmarks with GNSS
• Annual campaigns consisting of ≥ 24-hour 

deployments
• Winter timeframe to reduce seasonal noise

Methods from: “Attachment V: Setting an NGS 3D Monument” by: 
National Geodetic Survey. September 30, 2004, Updated October 27, 2009

3-D Deep Rod Installation at Jamestown, VA

J



Project Objectives Cont.

3) Compute land relative differences

USGS ScienceBase Data Release:

– RINEX files 

– CSV with benchmark/survey information and computed ellipsoid 
heights in ITRF2014 

– Metadata

Data Processing in OPUS-Projects

– Piecewise linear with normal constraints

– HUB: VAGP (2007) -centrally located and within 100 km

– Constrained CORS: CORB, DED2, LS03, NCCR, NCJA

– TROPO: vary year to year

– *In 2018 VAGP was not available so LS03 was used

How much does the CORS 
network configuration 

affect results?

CORS

Lotspeich and Duda, 

2022

J



Chesapeake Bay 
Regional 

Subsidence 
Monitoring Study

Special Thanks 

NASA Jet Propulsion Laboratory - Brett Buzzanga

Hampton University - Bill Moore

Delaware Geological Survey - Tom McKenna

US Fish and Wildlife Service - Scott Covington

VA Institute for Marine Science - Scott Lerberg

National Park Service – Neil Winn & Jim Lynch

Chesapeake Bay National Estuarine Research Reserve – Kyle Derby

Numerous surveyors and field operations personnel

Interagency Steering Committee

US Geological Survey

VA-WV WSC: Jim Duda 

EESC: Joel Carr 

Virginia Tech

D. Sarah Stamps, Gabbi Troia, Karen Williams, & Madeline Kronebusch

Maryland Geological Survey

Andy Staley, Thomas Ulizio, & Heather Quinn

National Geodetic Survey

Observation and Analysis Division: Philippe Hensel

Field Operations Branch: Ryan Hippenstiel

Corbin Testing and Training Center: Charlie Geoghegan
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Chesapeake 
Bay Network

• 62 survey marks monitored  

yearly (October) since 2019

• Chesapeake Bay, Delaware Bay

• Atlantic Barrier Islands, Delmarva 

peninsula, Coastal Plain, 

Piedmont

• Variety of monumentation types

S



Philippe Hensel, NGS, philippe.hensel@noaa.gov

D. Sarah Stamps, Virginia Tech, dstamps@vt.edu

Jim Duda, USGS, jmduda@usgs.gov
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QUESTIONS?
Thank you!

mailto:philippe.hensel@noaa.gov
mailto:dstamps@vt.edu
mailto:jduda@usgs.gov

