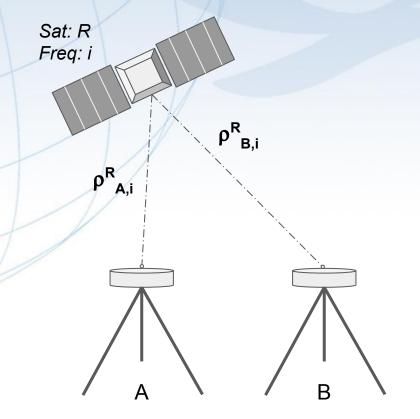

Multi-GNSS Single-Difference Baseline Processing at NGS with newly developed M-PAGES software

Bryan Stressler (bryan.stressler@noaa.gov), Andria Bilich, Clement Ogaja, Jacob Heck NOAA/National Geodetic Survey EGU21-5556, April 28th, 2021

• **M-PAGES = M**ulti-GNSS **PAGES** Software

- Single-difference baseline positioning model
- Software will integrated for use in:
 - Online Positioning User Service (OPUS)
 - GNSS Orbit determination
 - NOAA CORS Network (NCN) monitoring

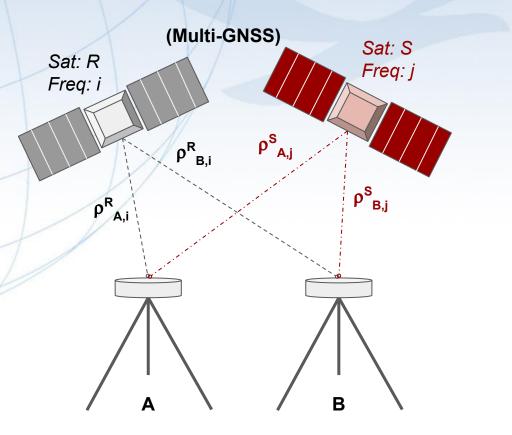
Systems	Solution Type	East RMS [cm]	North RMS [cm]	Up RMS [cm]
GPS-only	Float	2.52	1.22	3.43
	Fixed	1.07	0.88	2.53
GPS+GAL	Float	1.32	0.97	2.60
	Fixed	0.57	0.76	2.24


Above: East/North/Up positioning errors for GPS+GAL fixed solutions.

Left: Positioning results for ~30 baselines (< 200 km; 45 x 2-Hr sessions each).

Overview

- M-PAGES = Multi-GNSS PAGES Software
- Single-difference baseline processing strategy
- Software will integrated for use in:
 - Online Positioning User Service (OPUS)
 - GNSS Orbit determination
 - NOAA CORS Network (NCN) monitoring


Single-Difference Baseline Processing

SD: $\rho_{AB,i}^{R} = \rho_{A,i}^{R} - \rho_{B,i}^{R}$

- Satellite-specific terms cancel
- Receiver terms (clock, biases) do not
- Flexible for multi-GNSS
 - All SD observables are on the same frequency

Why not double-difference?

- If frequency i ≠ j we cannot resolve integer ambiguities
- Tightly coupled double-difference processing is possible (e.g., GPS L1/L5 and GAL E1/E5a)
 - Limits processing to GPS satellites with L5
- Could process separately then combine normal equations
- Overall, we prefer the single-difference model for multi-GNSS

Single-Difference Equations

$$P_{ab,k}^{s} = \rho_{ab}^{s} + c \,\delta t_{ab} + \Delta T_{ab}^{s} + \Delta I_{ab,k}^{s} + d_{ab,k} + e$$

Pseudorange

 $\varphi_{ab,k}^{s} = \rho_{ab}^{s} + c \,\delta t_{ab} + \Delta T_{ab}^{s} + \Delta I_{ab,k}^{s} + \lambda_{k} N_{ab} + D_{ab,k} + \epsilon \quad \text{Carrier Phase}$

For stations a,b and satellite s, on frequency k where:

 ρ_{ab}^{s} = true single difference range for stations a,b to satellite s [m] δt_{ab} = relative receiver clock offset [s] ΔT_{ab}^{s} = relative tropospheric delay [m] $\Delta I_{ab,k}^{s}$ = relative ionospheric delay [m] $d_{ab,k}$ = relative receiver code biases [m] $D_{ab,k}$ = relative receiver phase biases [m] $N_{ab,k}$ = SD ambiguity [cycles] e = pseudorange errors ϵ = carrier phase errors

- Satellite-specific terms drop out
- Receiver-specific terms do not

Single-Difference Ionosphere-Free Equations

$$P_{ab,if}^{s} = \frac{f_{i}^{2} P_{ab,i}^{s} - f_{j}^{2} P_{ab,j}^{s}}{f_{i}^{2} - f_{j}^{2}} = \rho_{ab}^{s} + c \,\delta t_{ab} + \Delta T_{ab}^{s} + d_{ab,if}^{s}$$

$$\varphi_{ab,if}^{s} = \frac{f_{i}^{2} \varphi_{ab,i}^{s} - f_{j}^{2} \varphi_{ab,j}^{s}}{f_{i}^{2} - f_{j}^{2}} = \rho_{ab}^{s} + c \,\delta t_{ab} + \Delta T_{ab}^{s} + \lambda_{if} N_{ab}^{s} + D_{ab,if}^{s}$$
Carrier Phase

When processing multiple systems an inter-system bias terms must be introduced.

- Code bias term (d_{ab}^s) drops out for reference combination (i.e., GPS C1W/C2W)
- To make ambiguity resolution possible, we first solve for the wide-lane ambiguity using either the wide-lane or Melbourne-Wübbena combination:

$$\varphi_{ab,if}^{s} = \frac{f_{i}^{2} \varphi_{ab,i}^{s} - f_{j}^{2} (\varphi_{ab,j}^{s} + \lambda_{j} N_{wl})}{f_{i}^{2} - f_{j}^{2}} = \rho_{ab}^{s} + c \,\delta t_{ab} + \Delta T_{ab}^{s} + \lambda_{nl} N_{ab,nl}^{s} + D_{ab,if}$$

 λ_{nl} = narrow lane wavelength (~10.6 cm for GPS L1/L2)

Single-Difference Wide-Lane Equations

$$P_{ab,wl} = \frac{f_i P_{ab,i} - f_j P_{ab,j}}{f_i - f_j} = \rho_{ab}^s + c \,\delta t_{ab} + \Delta T_{ab}^s + \Delta I_{ab,wl}^s + d_{ab,wl}$$
 Pseudorange

$$\varphi_{ab,wl} = \frac{\int_{i} \varphi_{ab,i} - \int_{j} \varphi_{ab,j}}{f_{i} - f_{j}} = \rho_{ab}^{s} + c \,\delta t_{ab} + \Delta T_{ab}^{s} + \Delta I_{ab,wl}^{s} + D_{ab,wl} + \lambda_{wl} N_{ab,wl}^{s}$$
 Carrier Phase

- On short baselines, we can neglect the effects of the troposphere and ionosphere and still resolve the wide-lane ambiguities.
 - Residual effects are small relative to the wide-lane wavelength (~86 cm for GPS L1/L2)
- On **long baselines**, we must either model/estimate these effects or use the geometry-free Melbourne-Wübbena combination to estimate wide-lane ambiguities.

Single-Difference Melbourne-Wübbena Equations

 $MW = \varphi_{wl} - P_{nl}$

 $MW = \lambda_{wl} N_{wl} + D_{ab, wl} + d_{ab, nl}$

- Combination is geometry-free and therefore should not be impacted by baseline length
- Higher noise level due to usage of pseudorange

Combining the code and phase bias terms, assuming they remain stable:

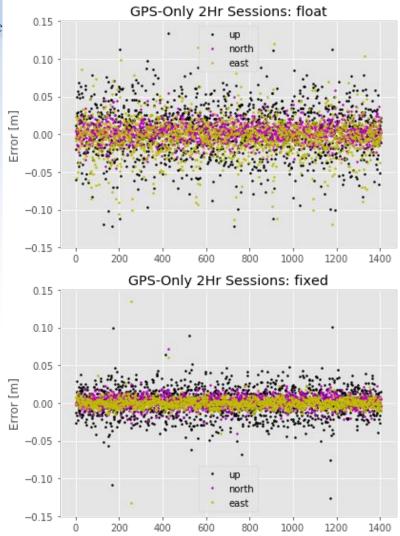
 $MW = \lambda_{wl} N_{wl} + B_{ab,mw}$

• This yields a biased estimate of the single-difference wide-lane ambiguity.

Ambiguity Resolution

- Receiver phase bias terms do not cancel which yields biased float ambiguity estimates.
 - To combat this, we select a "datum" arc (per frequency) to absorb the effect.
 - Datum arc: contribute to phase bias parameter
 - All other arcs: contribute to phase bias and ambiguity parameters
- As a result, we are able to resolve the single-difference ambiguities.
- M-LAMBDA approach

<pre>"gode-godz_PHASE_BIAS_0_0": { "start_time": "2019-001T00:00:00.00 GPS", "end_time": "2019-001T23:59:30.00 GPS", "apriori_value": 0.0, "adjusted_value": -0.1221, "sigma": 0.00734, "number_of_observations": 23879 }.</pre>	
<pre>"gode-godz_G26_PHASE_AMBIGUITY_0_0": { "start_time": "2019-001T00:00:00.00 GPS", "end_time": "2019-001T00:42:30.00 GPS", "apriori_value": 0.0, "adjusted_value": 0.98251, "sigma": 0.0027.</pre>	<pre>"gode_godz_G26_PHASE_AMBIGUITY_0_0": { "start_time": "2019-001T00:00:00.00 GPS", "end_time": "2019-001T00:42:30.00 GPS", "apriori_value": 0.0, "adjusted_value": -7.13958, "signa": 0.00789,</pre>
"number_of_observations": 86 }, "gode-godz_G16_PHASE_AMBIGUITY_0_0": { "start_time": "2019-001T00:00:00.00 GPS", "end_time": "2019-001T01:36:00.00 GPS", "apriori_value": 0.0, "adjusted_value": 8.98639.	<pre>"number_of_observations": 86 }, "gode-godz_G16_PHASE_AMBIGUITY_0_0": { "start_time": "2019-001T00:00:00.00 GPS", "end_time": "2019-001T01:36:00.00 GPS", "apriori_value": 0.0, "adjusted_value": 0.86428,</pre>
<pre>"sigma": 0.0013, "number_of_observations": 193 }, "gode-godz_G23_PHASE_AMBIGUITY_0_0": { "start_time": "2019-001T00:00:00.00 GPS", "end_time": "2019-001T01:47:00.00 GPS", "apriori value": 0.0,</pre>	<pre>adjuster_value : 0.0075, "sigma": 0.0075, "number_of_observations": 193 }, "gode-godz_G23_PHASE_AMBIGUITY_0_0": { "start_time": "2019-001T00:00.00.00 GPS", "end_time": "2019-001T01:47:00.00 GPS", "apriori value": 0.0,</pre>
<pre>"adjusted_value": -0.00196, "sigma": 0.00117, "number_of_observations": 215 }, "gode-godz_G09_PHASE_AMBIGUITY_0_0": { "start_time": "2019-001T00:00:00.00 GPS", "end_time": "2019-001T02:29:30.00 GPS", "apriori_value": 0.0, "adjusted_value": -1.00548, "sigma": 0.00103, "number of observations": 300</pre>	<pre>"adjusted_value": -8.12406, "sigma": 0.00738, "number_of_observations": 215 }, "gode-godz_G09_PHASE_AMBIGUITY_0_0": { "start_time": "2019-001T00:00:00:00 GPS", "end_time": "2019-001T02:29:30.00 GPS", "adjusted_value": -9.12758, "sigma": 0.00733, "number of observations": 300</pre>

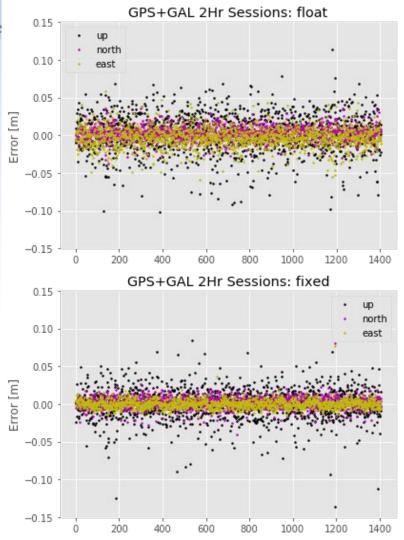

Float ambiguity estimates are very close to integers when phase bias term is introduced (left). Without phase bias, float ambiguities exhibit a consistent decimal component (right).

NOAA's National Geodetic Survey Positioning America for the Future

Sample Results- GPS Only

- ~30 baselines (< 200 km) selected from the NOAA CORS Network
- 45 x 2-Hr sessions (2021-001 2021-045)
- Single-baseline solutions evaluated against ITRF2014 station coordinate functions

Systems	Solution Type	East RMS [cm]	North RMS [cm]	Up RMS [cm]
GPS-only	Float	2.52	1.22	3.43
	Fixed	1.07	0.88	2.53


NOAA's National Geodetic Survey Positioning America for the Future

Sample Results- GPS+GAL

- ~30 baselines (< 200 km) selected from the NOAA CORS Network
- 45 x 2-Hr sessions (2021-001 2021-045)
- Single-baseline solutions evaluated against ITRF2014 station coordinate functions

Addition of Galileo improves results!

Systems	Solution Type	East RMS [cm]	North RMS [cm]	Up RMS [cm]
GPS-only	Float	2.52	1.22	3.43
	Fixed	1.07	0.88	2.53
GPS+GAL	Float	1.32	0.97	2.60
	Fixed	0.57	0.76	2.24

Next Steps

- Extend capabilities and testing beyond GPS & Galileo
- Testing w/ multi-baseline networks
- Improve ambiguity validation
- Integrate software into NGS services (e.g., OPUS)

References

Chen et. al., An improved method for multi-GNSS baseline processing using single difference. *Advances in Space Research* 63, 2711-2723 (2019), <u>https://doi.org/10.1016/j.asr.2017.09.009</u>.

Paziewski, J., Wielgosz, P. Accounting for Galileo–GPS inter-system biases in precise satellite positioning. *J Geod* 89, 81–93 (2015). <u>https://doi.org/10.1007/s00190-014-0763-3</u>.

Chang, X.W., Yang, X. & Zhou, T. MLAMBDA: a modified LAMBDA method for integer least-squares estimation. *J Geod* 79, 552–565 (2005). <u>https://doi.org/10.1007/s00190-005-0004-x</u>.