geodesy.noaa.gov

Preparing for New Datums and New SPCS

PSLS Wednesday Webinar March 2023

Jeff Jalbrzikowski, P.S., GISP, CFS Appalachian Regional Geodetic Advisor

jeff.jalbrzikowski@noaa.gov 240-988-5486

Organizational Structure

-Department of Commerce (DoC) (~47,000 employees)

-National Oceanic and Atmospheric Administration (NOAA)

-National Ocean Service (NOS)

-National Geodetic Survey (NGS) (~175 employees)

Wergeniøatilstig, Steuret MGS

-Department of merce (DoC) (~47,000 loyees)

-National Oceanid and Atmospheric Administration (NOAA)

-National Ocean Service (NOS)

NGS Mission

To define, maintain and provide access to the National Spatial **Reference System (NSRS)** to meet our Nation's economic. social, and environmental needs.

"Modernizing" the NSRS means:

Updating **all** NSRS coordinates

- Replace existing datums with new datums
- Replacing existing State Plane with new State Plane
 - Accounting for coordinates changing with time
- Improving NGS products and services
 - Simplifying customer contributions JOUIG
- Making the NSRS:
 - *More* accurate
 - *More* accessible
 - *More* efficient

National Spatial Reference System (NSRS)

A consistent coordinate system that defines:

- latitude
- longitude
- height
- scale

...and their time variants

- orientation
- gravity

throughout the United States.

National Spatial Reference System (NSRS)

These items ARE part of the NSRS

Horizontal Datums (aka Geometric Reference Frames)	Vertical Datums	Great Lakes Datums	Geoid Models	Transformations and Conversions
NAD83	NAVD88	IGLD85	GEOID18	NADCON
NAD27	NGVD29	IGLD55	GEOID12B	VERTCON
USSD	VIVD09		GEOID09	
	GUVD04		GEOID06	SPCS83
	NMVD03		GEOID03	SPCS27
	ASVD02		GEOID99	
	PRVD02		GEOID96	
			ALASKA94	
			GEOID93	
			GEOID90	

National Spatial Reference System (NSRS)

These items are **NOT** part of the NSRS

Horizontal Datums (aka Geometric Reference Frames)	Vertical Datums	Geoid Models	Transformations and Conversions
WGS84	IHRS (by IAG)	OSU91A	CorpsCon
WGS72		EGM96	Appendix B.6 of DMA TR 8350.2 (WGS 84)
ITRF (Intl. Terrestrial Reference Frame)		EGM2008	Oregon Coordinate Reference System (ORCS)
IGS (Intl. GNSS Service reference frame)			Kansas Regional Coordinate System

Maintaining the NSRS

- NSRS *does* get updated over the years.
 NAD27→NAD83 ... NGVD29→NAVD88
- Federal Register (<u>federalregister.gov</u>)
 - official indication of changes and updates
 - via a Federal Register Notice (FRN)
 - FRN affirmed NAD 83 in 1989 (<u>54 FR 25318</u>)
 - Federal Register Vol 58, No. 120
 - FRN affirmed NAVD 88 in 1993 (<u>58 FR 34245</u>)
 - Federal Register Vol 54, No. 113
 - Same for forthcoming new datums

geodesy.noaa.gov

Geodetic Control – Terminology Passive Control

• All marks are **passive**—they sit there and hold a **point**

Geodetic Control – Terminology Active Control

 Some marks have permanently installed equipment that enables nearly continuous observations (they still sit there and hold a **point**)

geodesy.noaa.gov

Active Control

Geodetic Control – Terminology Active vs. Passive Control

Passive – setting up your RTK Base on existing geodetic control (e.g. Datasheet) while collecting with RTK Rover

Active – setting up your RTK Base to log data while collecting with RTK Rover then processing Base data via OPUS; or collecting with RTN Rover

My point: *surveying is still surveying*

geodesy.noaa.gov

Active Control CORS

Continuously Operating Reference Station

geodesy.noaa.gov

NOAA CORS Network (NCN)

Gulf of

Mexico

2845 stations

241 partners

- 158 GPS-only stations (5.55%)
- 1537 GNSS stations (54.02%)

Non-Operational: 203 stations (7.14%)
Suspended: 8 stations (0.28%)
Decommissioned: 937 stations (32.93%)

CORS Networks

• Global: International GNSS Service (IGS) Network

NSRS: NOAA CORS Network (NCN)

• **Regional**: State or Private CORS Networks

They're all *semi*-coupled, not 100% overlap.

IGS Network

geodesy.noaa.gov

NOAA CORS Network (NCN)

NOAA CORS Network (NCN) in PA

KeyNetGPS CORS Network

NOAA CORS Network (NCN) in PA

KeyNetGPS CORS Network

NGS Mission

To define, maintain and provide *access to* the **National Spatial Reference System (NSRS)**

to meet our Nation's economic, social, and environmental needs.

access...? = traditionally \rightarrow passive control (marks/disks/objects) = modern and future \rightarrow active control (NCN CORS)

North American Vertical Datum of 1988

NAVD88

will be replaced by

North American-Pacific Geopotential Datum of 2022

NAPGD2022

(pronounced: nap-jee-dee)

geodesy.noaa.gov

NAVD88 geoids versus NAPGD2022 geoids

geodesy.noaa.gov

Two types of geoid models

• Gravimetric

• Hybrid

Gravimetric \rightarrow Hybrid

- Gravimetric geoid is created from "scratch" with various types of gravity data
 USGG2003, USGG2009, USGG2012, xGEOID19
- **Hybrid** geoid is simply a gravimetric geoid then <u>best fit some vertical datum</u>... like NAVD88
- GEOID03, GEOID09, GEOID12B, GEOID18

geodesy.noaa.gov

Gravimetric \rightarrow Hybrid

topographic

surface

geodesy.noaa.gov

NAPGD2022 uses a Gravimetric Geoid

gravimetric geoid

datum zero surface

Concept

 Datum zero surface aligned to Global Mean Sea Level (GMSL)

Estimated change in orthometric heights from NAVD88 to NAPGD2022

Quality of vertical datum transformation? GPS on Bench Marks (GPSonBM)

Web Map Application

Anyone can collect and provide:

- -2 OPUS-Static solutions
 - $-\geq 4$ hours each
- -2 photos of each setup
- -Brief Description w/Ties

Deadline = 30 September 2023

Results increase accuracy of NAVD88<->NAPGD2022 transformation.

Yes, share

share my solution

 \sim

North American Datum of 1983

NAD83

will be replaced by
North American Terrestrial Reference Frame of 2022

NATRF2022

(pronounced: nat-ref)

Datum Defined

"The adopted standard latitude and longitude of a given station, together with the adopted standard azimuth of a line from that station."

• e.g. NAD27

-station Meade's Ranch and it's azimuth mark Waldo

Source: Proceedings of the 14th General Conference of the International Geodetic Association (IAG) - "Report on Geodetic Operations in the United States", O.H. Tittmann, Superintendent of the USC&GS NOAA's National Geodetic Survey Positioning America for the Future

geodesy.noaa.gov

pographic surfac

 φ_0

Datum – Traditional Horizontal

North American Datum of 1927 (NAD27)

Meades Ranch

Reference Frame Defined

"A system of graduated lines symbolically attached to a body that serve to **describe the position of points relative to the body.**"

Source: Encyclopaedia Brittanica – Reference Frame (Physics), The Editors of the Encyclopaedia Brittanica, April 08, 2016.

geodesy.noaa.gov

International Terrestrial Reference Frame

International Network of SGTs

International Earth Rotation and Reference Systems Service (IERS)

Terminology - Changing Coordinates

Conversion

- change the *type* of coordinate
- NAD83(2011) latitude & longitude → NAD83(2011) SPCS

Transformation

- change the *datum* of coordinate
- NGVD29 height → NAVD88 height
- NAD 27 latitude & longitude → NAD 83(2011) latitude & longitude

Propagation

- change the *epoch* of coordinate
- NATRF2022 epoch 2020.00 to NATRF2022 epoch 2023.243

Estimated Geometric Change - Horizontal NAD83 (2011) → NATRF2022 0.64t

Sirection or Shire

3-4

3-9-1-1-

3-0-1+

1-1-m

1-m

35-0-ft-

-0:9·m

0:8·m

-2 m

5

M 4:

Cure,

I'll be selling these bumper stickers on LinkedIn...

SPCS2022 MAKING EARTH FLAT AGAIN ...ONE ZONE AT A TIME

Really? No... not really!

SPCS83

Pennsylvania Coordinate System Law Act of Dec. 16, 1992, P.L. 1224, No. 161

Problems

- Designates specific zones
- Parameters of projections included
- Restricts datum usage to 1983 or 1927
- Unit of measure designated as Survey Foot

PSLS Geospatial Committee and Pennsylvania GeoBoard have been working on this for \sim 3 years now.

In agreement how to proceed, it's all about timing at this point.

SPCS2022

geodesy.noaa.gov

Stakeholders Involved in PA SPCS2022

- PennDOT
- PTC
- PSLS
- PSPE
- PA Geospatial Coordinating Board (GeoBoard)
 - Geodetic Working Group
- County GIS Professionals Association of PA
- PA-MAGIC (now Keystone GIS)
- PA-MAPPS

SPCS83

North and South Zones as they exist now

Created 2/11/2021 (Nagendra Paudel)

Created 2/11/2021 (Nagendra Paudel)

SPCS2022

PA stakeholders requested 4-5 zones, which NGS designed, the following are <u>Preliminary</u> maps

Preliminary SPCS2022 design: Pennsylvania West Zone

National Geodetic

Survey

Transverse Mercator projection

North American Terrestrial Reference Frame of 2022

Central meridian: 280° 15' E Cen merid scale: 1.000 030 (exact)

Areas within ± 30 ppm distortion (1:33,333 = ± 0.16 ft per mile): 95% of population 93% of all cities and towns 82% of entire zone area

Distortion values (ppm)	
Entire zone:	Cities and
Min, Max = -95, +58	towns:
Range = 153	Min = -62
Mean = -9	Max = +53
Weighted mean = -5	Range = 116
(weighted by population)	Mean = -2

Linear distortion at topographic surface (parts per million)

Created 2/8/2021 (Nagendra Paudel)

Preliminary SPCS2022 design: Pennsylvania Central Zone

National Geodetic Survey

Oblique Mercator projectionNorth American Terrestrial Reference Frame of 2022Origin latitude: 41° 21' NOrigin longitude: 282° 15' ESkew axis azimuth: +52°Skew axis scale: 1.000 035 (exact)Areas within ±50 ppm distortion(1:20,000 = ±0.26 ft per mile):90% of population89% of all cities and towns83% of entire zone areaDistortion values (ppm)Entire zone: Cities and

	Onico una
Min, Max = -89, +149	towns:
Range = 238	Min = -66
Mean = -12	Max = +93
Weighted mean = 0.0	Range = 159
(weighted by population)	Mean = -0.1

Linear distortion at topographic surface (parts per million)

Created 2/5/2021 (Michael Dennis)

Lambert Conformal Conic projection North American Terrestrial Reference Frame of 2022 Central parallel: 41° 21' N Central parallel scale: 1.000 030 (exact)

TORR

NOAA's

National Geodetic

Survey

Areas within ±40 ppm distortion (1:25,000 = ±0.21 ft per mile): 90% of population 90% of all cities and towns 86% of entire zone area

Distortion values (ppm)		
Entire zone:		
/lin= -79	Range = 143	
Max = +64	Mean = -9	
Neighted mean = -4		
weighted by population)		
Cities and towns:		
/lin = -54	Range = 116	
Max = +62	Mean = +5	

Linear distortion at topographic surface (parts per million)

Created 2/10/2021 (Nagendra Paudel)

SPCS2022

NGS will create a **Single Statewide Zone** for every State, the following is a <u>Preliminary</u> map

UTM (NAD83) Zones as

UTM

The following are maps using existing UTM zones as a Single Statewide Zone

(included to highlight the lower performance as compared to Preliminary NGS Zone)

Existing UTM Zone 17 North used as statewide zone: Pennsylvania

NOAA's National Geodetic Survey Positioning America for the Future

geodesy.noaa.gov

Northea

SPCS2022 Zone Layers in PA

Southeas

- Both Single Statewide and Multi-Zone Layers will coexist
- Think about your data, your goals, your customers
 - Remember that geographic coordinates are your friend!
- Smaller zones not "the best" ... it all depends on usage & goals

SPCS2022 Zone Layers and LDPs

- Each state may have max of 3 zone "layers"
 - One layer must be statewide zone
 - PA Single Statewide
 - Other layers have two or more zones
 - PA Multi-Zone (West, Central, Northeast, Southeast)
 - Only one layer can have discontinuous coverage
 - Left open for possibilities
- Multi-zone layer can consist of LDPs
 - Designed by stakeholder "contributing partners"
 - NGS will not do this for stakeholders
 - LDP coverage can be discontinuous
NOAA's National Geodetic Survey Positioning America for the Future

geodesy.noaa.gov

The Survey Foot is dead!

Long live the Survey Foot!

US Survey Foot was deprecated 31 December 2022... now what?!?

What happened to the US Survey Foot?

• Deprecated **31 December 2022**

Federal Register / Vol. 85, No. 193

DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

National Oceanic and Atmospheric Administration

Deprecation of the United States (U.S.) Survey Foot

AGENCY: The National Institute of Standards and Technology and National Geodetic Survey (NGS), National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). **ACTION:** Notice; final determination.

Which begs the question –What should you be doing now?

What should you be doing now?

- Prepare for this *along with new datums*Understand this is not enforced
 - Neither NIST or NGS are a regulatory agency
 - We support education/outreach of course
 - But OPUS, NCAT, etc. will <u>not</u> have US Survey Foot options/output in SPCS2022 zones

2 parts per million (ppm)? 1,000,000.00 sft = 999,998.00 ift 10,000,000.00 sft = 9,999,980.00 ift 1,000.00 sft = 999.998 ift (can you measure that?)

- International \rightarrow 1 ft = .3048 m
- US → 1 ft = .30480061 m (approx.)

NOAA's National Geodetic Survey Positioning America for the Future

geodesy.noaa.gov

The Survey Foot is dead!

Long live the Survey Foot!

US Survey Foot was deprecated 31 December 2022...

But will **always** be available in NGS tools for NAD83 and NAD27

ADDITIONAL RESOURCES

Resources at geodesy.noaa.gov

Regional Geodetic Advisor Program

geodesy.noaa.gov/ADVISORS/

query any major search engine: "ngs advisors"

Appalachian (KY, OH, PA, and WV)

Jeff Jalbrzikowski, P.S., GISP, CFS The Ohio State University Columbus, OH 43210 Mobile: (240) 988-5486

Jeff Jalbrzikowski

Jeff Jalbrzikowski, P.S., GISP, CFS Appalachian Regional Geodetic Advisor

jeff.jalbrzikowski@noaa.gov 240-988-5486

https://www.ngs.noaa.gov/ADVISORS/

use any major search engine: "NGS advisors"