DEPENDENCE OF IGS PRODUCTS ON THE ITRF DATUM

- IGS use of ITRF datum
 - historic & recent
- Special reliance on ITRF scale
 - fixed TRF scale used to estimate satellite antenna offsets
 - problem is non-linear but hopefully convergent over time
- Recommendations for future ITRF realizations

Jim Ray, NOAA/NGS
Paul Rebischung, IGN
Ralf Schmid, TU München

IGS Aligns to IERS Reference Systems

- Over its history (~17 years) IGS has tried to adopt IERS references
 - IERS Conventions are implemented (mostly)
 - successive ITRFxx datums have been adopted
 - but in recent years, GPS-based realizations of ITRF (e.g., IGS05)
 preferred for highest internal consistency
 - UT1 reference is fixed (but propagated to EOP epoch via IGS LODs)
- But there have been difficulties.
 - datum shifts in ITRFxx updates have been disruptive for users
 - rotations applied to ITRF93 were a big problem
 - scale variations have become leading problem lately
- And IERS EOPs found to be too inaccurate
 - IERS polar motion & UT1 were overly smoothed in mid-1990s
 - current IERS UT1 values are noisy at short periods
 - IGS adopted its own observed pole in 1995

ITRFxx Rotations wrt ITRF2008 (@ 2000.0)

- ITRF orientation has been stable except during ITRF93
 - caused direct impact on IGS orbits (next slide)

Orbit Rotations wrt IGS Reprocessed

ITRFxx Translations wrt ITRF2008 (@ 2000.0)

- Large drifts in ITRF origin, esp along Z axis
 - but these have not impacted IGS orbits much (next slide)

Orbit Translations wrt IGS Reprocessed

ITRF Scale Especially Important for IGS

Since 2006 IGS estimates satellite antenna phase center offsets

(PCOs)

 but GPS data only weakly sensitive to PCO errors:

$$\Delta \rho = -\Delta PCO (0.94 + 0.06 \sin^2 e)^{\frac{1}{2}}$$

and highly correlated with station heights:

(from E. Cardellach et al., 2007)

as well as with zenith troposphere delays:

$$\Delta$$
ZTD ~ 1/sin e where e = elevation angle

 So it is necessary to fix the ITRF scale (i.e., net station heights) to solve for satellite PCOs

$$<\Delta PCO> [mm] = -20 \cdot \Delta s [mm]$$

ITRFxx Scales wrt ITRF2008 (@ 2000.0)

- ITRF scale has drifted significantly over time
 - current uncertainty ~8 mm (1.2 ppb) ⇒ PCO uncertainty ~16 cm

Maintenance of PCOs is Iterative Process

- IGSxx frame + igsxx.atx (PCOs + PCVs) ⇒ inputs for next ITRFyy
 - IGSxx frame & igsxx.atx calibrations must be self-consistent
 - applied in reprocessing of old data for IGS inputs to next ITRFyy
- Any shift in ITRFyy scale ⇒ new satellite PCOs & igsyy.atx
 - back-solve reprocessed IGS solutions for new consistent satellite PCOs
 - updated ground calibrations only allowed with major *.atx revisions
 - but new igsyy.atx then no longer fully consistent with ITRFyy
- Consistency is restored by computing ITRFyy station position corrections due to revised *.atx values
 - ITRFyy + atx corrections ⇒ IGSyy frame (aligned to ITRFyy)
- IGS then adopts IGSyy frame + igsyy.atx
 - but no longer consistent with last reprocessing
- Process will converge only if ITRF datum gets more stable

Competing ITRF Combination Strategies

- Differences between IGN & DGFI strategies should be resolved
 - ITRF2005 dilemma repeated 5 years later with no clear progress
 - reflects badly on all contributing organizations & undermines confidence in ITRF as an international standard

• IGN procedure:

- stack each technique independently in time ⇒ TRFs(X, V) + EOPs(t)
- combine 4 technique solutions with local ties ⇒ ITRF

DGFI procedure:

- solve all technique normal eqns with ties simultaneously
- assume VLBI & SLR have same intrinsic scales
- Both assume linear site motions & least squares
- Relative performance differences depend on actual VLBI/SLR scale equality & linearity of long-term site motions wrt PM, local ties & reweighting errors

Polar Motion Correlations wrt AAM+OAM

- Compare combination PM excitation with independent AAM+OAM (over 27 Feb. 1997 – 26 Dec. 2008)
 - following results from J. Kouba (2010)
 - provides very sensitive test of relative performance
 - differences of ~0.006 are significant at 95% level
- IGN & IGS results very similar & correlate better with AAM+OAM
 - high-frequency correlations significantly lower for DGFI

(from J. Kouba, 2010)

PM Excitation Correlations wrt AAM+OAM									
Intervals	Chi	₂ (PM-xra	te)	Chi₁ (PM-yrate)					
	IG1	IGN	DGFI	IG1	IGN	DGFI			
all	0.904	0.904	0.902	0.769	0.769	0.765			
30 d	0.892	0.892	0.888	0.858	0.858	0.852			
5 d	0.785	0.785	0.775	0.732	0.732	0.719			
3 d	0.703	0.700	0.687	0.634	0.634	0.616			

Polar Motion Residuals wrt AAM+OAM

- PM excitation residuals wrt AAM+OAM smallest for IG1 & IGN solutions
 - larger DGFI residuals correspond to 37 μas/d more high-frequency noise
- Probable weaknesses in DGFI approach are:
 - assumption of equivalent VLBI & SLR scales
 - sub-optimal relative weighting of techniques over time
 - sub-optimal weighting of local ties
 - greater sensitivity to poorer geometry of VLBI & SLR networks over time

(from J. Kouba, 2010)

(PM Excitation - AAM+OAM) Residuals

(mas/d)	Chi ₂ (PM-xrate)			Chi ₁ (PM-yrate)		
	IG1	IGN	DGFI	IG1	IGN	DGFI
all	0.270	0.270	0.273	0.255	0.254	0.257
<6 d	0.162	0.162	0.173	0.139	0.139	0.148
<3 d	0.111	0.111	0.122	0.106	0.106	0.112

Recommendations

- Stability of ITRF datum critical for IGS
 - orientation & scale are most important for product continuity
- Considering ~1 ppb accuracy of present scale, IGS asks that future ITRF scale be conventionally fixed to ITRF2008
 - neither VLBI or SLR scales likely to improve much in near term
 - therefore no benefit for users to see scale jumps with each update
 - if not, IGS will adopt ITRF2008 scale internally
- IERS procedures for handling ITRF updates must be improved
 - clear, respected schedules should be agreed
 - combination methodologies must be objectively & efficiently evaluated
 - aim for next ITRF realization in ~2013
- Improvements in ITRF datum stability needed
 - focussed research efforts should be organized by techniques & IERS