FUTURE IMPROVEMENTS IN DETERMINATIONS OF EARTH ORIENTATION PARAMETERS

- Present polar motion accuracy – about 30 µas, mostly from GPS
- Present UT1 accuracy
 - usually from 4 to 20 µs, but sometimes worse
 - mostly from VLBI, but GPS LOD could add more
- Improvements possible from better networks, new GNSSs, reduced systematic errors

Jim Ray, NOAA/NGS

IAG 2009 Scientific Assembly, Buenos Aires, 2 September 2009 – session 3.1, paper 164

Recent Polar Motion Accuracy

- ITRF2005 multi-technique combination experience
 - scaled formal errors ~30 μas for daily PM-x & PM-y
 - equivalent to net equatorial rotation errors of ~1 mm
- IGS GPS heavily dominates modern combinations
 - due to robust global network & continuous, high-accuracy data
 - SLR & VLBI networks are sparse, non-uniform, & irregularly observed
 - SLR & VLBI PM contribute to rotational frame alignments, less for EOPs
 - DORIS PM noisy due to limited satellite constellation
- GPS PM errors difficult to quantify precisely
 - since increase in IGS RF to 99+ sites (Jan. 2004), PM errors <~30 μas
 - recent PM errors due to: orbit mismodeling, subdaily EOP tide model errors, & AC solution constraints
 - can compare Rapid & Final series for some insights
 - current Rapids about 25 to 50% poorer than Finals
 - IGS reprocessing campaign will improve old PM results

Years (units = µas)	Rapid		Final		Δ(Rapid-Final)	
	<σ _x >	<σ _v >	<σ _x >	<σ _v >	$<\Delta x> \pm SDev$	<∆y> ± SDev
1999-2001.5	77.3	85.9	44.1	44.4	119.9 ± 153.2	-29.7 ± 113.8
2001.5-2003	47.5	47.3	33.3	35.0	65.4 ± 73.9	6.3 ± 70.0
2004-2006	34.0	39.5	25.6	27.2	7.2 ± 38.7	-1.7 ± 38.8
2007-2009.5	24.3	27.7	20.1	20.1	-4.8 ± 28.9	-1.4 ± 31.1

Spectra of (Rapid-Final) PM Differences

- High-frequency noise consistent with ~30 µas accuracy
 - but longer period errors might be significant
 - fortnightly feature near 14.2 d may signify tide model errors

PM Differences among IGS ACs

AC Final X-Pole Differences with IGS Final COD 0 EMR -1 -2 **ESA** X-Pole Difference [mas] -3 GFZ JPL -4 -5 MIT - NGS -7 SIO -8 - IRF -9 - IGR 1470 1480 1490 1500 1510 1520 1530 1540 Time [GPS weeks]

- Differences among ACs reflect mostly analysis variations
 - networks, geophysical models, & parameterizations quite similar
 - main analysis differences relate to orbit dynamics & solution constraints

Recent PM-Rate Accuracy

- ITRF2005 multi-technique combination experience
 - scaled formal errors ~90 μas/d for PM-xrate & PM-yrate
 - but these estimates are probably optimistic
- IGS GPS also dominates PM-rate combinations
- GPS PM-rate errors can be assessed by examining day-boundary discontinuities
- PM-rates very sensitive to subdaily EOP tide model errors
 - imply IERS2003 errors for K1, O1, Q1/N2, & probably other lines
 - odd numbered harmonics of 1.04 cpy point to orbit errors
 - estimated IGS PM-rate errors: ~140 μas/d for xrate; ~180 μas/d for yrate
 - PM-yrate error larger due to greater 1.04 cpy orbit harmonics
- For excitation studies, probably best to use PM time differences, not directly observed PM-rates

Compute Polar Motion Discontinuities

Days

• Examine PM day-boundary discontinuities for IGS time series

- should be non-zero due to PM excitation & measurement errors

- Common peaks seen in most AC spectra are:
 - annual + 5th & 7th harmonics of GPS year (351 d or 1.040 cpy)
 - probably aliased errors of subdaily EOP tide model (IERS2003)

- Compare TPXO7.1 & IERS2003 (used by IGS) EOP models
 - TPXO7.1 & GOT4.7 test models kindly provided by Richard Ray
 - assume subdaily EOP model differences expressed fully in IGS PM results

- Aliasing of subdaily EOP tide model errors probably explains:
 - annual (K1, P1, T2), 14.2 d (O1), 9.4 d (Q1, N2), & 7.2 d (σ 1, 2Q1, 2N2, μ2)
- Orbit errors presumably responsible for odd 1.04 cpy harmonics

Recent UT1 Accuracy

- ITRF2005 multi-technique combination experience
 - mean scaled formal errors ~8.0 μs since 2002.0 (at irregular epochs)
 - equivalent to net equatorial rotation errors of ~3.7 mm
- UT1-UTC only measured by VLBI, but irregular quality & epochs
- For VLBI data since 2002:
 - 24-hr EOP sessions give UT1 formal errors of 2.2 to 2.8 μs (twice weekly)
 - accuracy is about twice formal errors: ~5 μs (= 2.3 mm rotation)
 - other 24-hr sessions have estimated mean accuracy ~20 μs (irregular)
 - 1-hr Intensive sessions have mean formal errors ~13 μs (nearly daily)
 - but Intensives show clear systematic effects that are difficult to handle
- Daily GPS LOD (= -UT1-rate) generally not used optimally
 - must model time-correlated biases easy in Kalman filter, difficult otherwise
 - LOD residuals from such a Kalman filter are ~4 μs
 - combinations with VLBI UT1 yield best UT1/LOD time series

Some Kalman Filter Combination Outputs

 \rightarrow Multi-technique EOP combinations mostly sub-optimal ! \leftarrow

Conclusions

- Stronger VLBI & SLR contributions will depend mostly on larger, more robust networks & continuous operation
 - GPS will probably continue to dominate PM for indefinite future
- GPS PM nearing asymptotic limit for random errors (~20 µas)
 - smaller systematic errors possible with new GNSSs, better orbit modeling, & better handling of solution constraints
 - better PM-rates require new subdaily EOP tide model & reduced orbit effects – prospects currently unclear
- VLBI UT1 improvements require attention to station- & networkdependent errors
 - new GNSSs & orbit models will improve GPS LOD by unknown amount
 - combination methods generally do not match observation accuracy & require better approaches
- Exploration of subdaily non-tidal EOPs remains distant, but a challenging possibility for UT1