Evaluation of GPS Orbit Prediction Strategies for the IGS Ultra-rapid Products

Kevin K Choi¹, Tae-Suk Bae², Jake Griffiths¹, Jim Ray¹

1. NOAA/National Geodetic Survey, Silver Spring, MD, USA 2. Civil, Environmental, and Geoinformation Engineering, Sejong University, Seoul, Korea

G41B-0736

Introduction and Background

☐ To serve real-time and near real-time users, the International GNSS Service (IGS) produces Ultra-rapid GPS & GLONASS orbit product updates every 6 hr. Each is composed of 24 hr of observed orbits, with an initial latency of 3 hr, together with propagated orbits for the next 24 hr. We have studied how the orbit prediction performance varies as a function of the arc length of the fitted observed orbits and the parameterization strategy used to estimate empirical solar radiation pressure (SRP) effects.

☐ Recent IGU combination performance is shown below. This plot shows the comparison of the first 6 hours of prediction (for each IGS Analysis Center) with the IGR orbit products.

☐ To focus on the dynamical aspects of the problem, nearly ideal conditions have been adopted by using IGS Rapid orbits (IGR) as observations and known Earth orientation parameters (EOPs).

Flow chart for orbit integration test

Define the problem

- Set up a-priori Initial Conditions for 15 parameters (PV, and SRPs for each SV). Initial Condition

.Improved IC

- . Solve normal equation . Obtain updated IC.

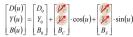
Predict Forward

- Integrate orbits for the next 24 hours using improved IC.
- Compute 15-min interval SV pos (sp3 format)
- ☐ Performance was gauged by comparison of the predicted orbits with IGR as truth by examining weighted RMS (WRMS - weight by satellite accuracy code in the Rapid Orbit products) and median orbit differences over the first 6 hr and the full 24 hr prediction intervals, as well as the stability of the Helmert alignment parameters. Note that the actual IGS Ultra-rapid accuracy is limited mostly by rotational instabilities, especially about the Z axis due to errors in near real-time and predicted UT1 values.

Helmert alignment Equation

$$\begin{bmatrix} x_2 \\ y_2 \\ = \begin{bmatrix} x_1 \\ y_1 \\ \end{bmatrix} + \begin{bmatrix} T_x \\ T_y \\ T \\ \end{bmatrix} + S \cdot \begin{bmatrix} x_1 \\ y_1 \\ \end{bmatrix} + \begin{bmatrix} 0 & R_z & -R_y \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ -R_z & 0 & R_x \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ R & -R & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ R & -R \end{bmatrix}$$

•where, S is orbital scale, T is translational vector, and R is rotational vector.

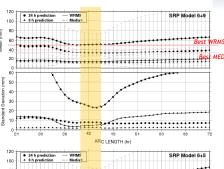

Models and Data

Orientation of Solar Radiation Pressure model [1]

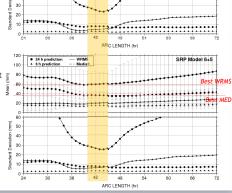
☐ 9 Parameter model ("6+9" Model)

☐ 5 Parameter model ("6+5" Model)

= Tightly held fixed to 5e-12

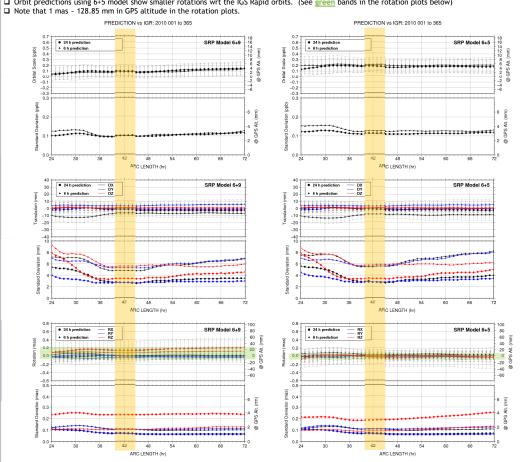

Orbit Models and Constants [2]

Models	Reference/Source	Max deg/order
Geopotential model	EGM08 (tide-free)	12/12
Radius of Earth	6378136.3 [m]	
Gravitational Constant (GM)	398600.4415E+09 [km ³ s ⁻²]	
Tidal variations	IERS 2010	
Solid Earth Tides	IERS 2010	
Ocean tides	IERS 2010 using FES2004	8/8
Third-body forces (point mass)	DE405 from JPL Sun, Moon, Venus, Jupiter, Mars	
Solar Radiation Pressure	CODE 9-parameter SRP model	
Earth Radiation Model (Albedo)	Not applied	
Integration Step Size	900 [s]	


- IGS rapid orbit products are used for orbit fitting.
- ☐ 24-hour propagation for each 365 days using CODE 6+9 and 6+5 models.
- ☐ Tested for 1 calendar year (from Jan 1 to Dec. 31, 2010)
- ☐ Satellites with NANU messages are excluded from the processing.

Finding an optimal arc length

- ☐ The quality of propagated GPS orbit is sensitive to
- ☐ Initial condition (position, velocity, SRP) ☐ Dynamic models (IERS convention)
- ☐ The initial condition is affected by the fitted arc lengths.
- ☐ Tested 24 to 72 hours of arc lengths by 1 hour increment.
- OBJECTIVE: Finding minimum arc length that shows minimum combined RMS and median, and small standard deviation over
- ☐ Arc lengths between 40 and 45 hours (Orange bands in the plot) shows the best fit @ to the IGR for both 6+9 and 6+5 models.
- □ 6+9 model fits well (smaller WRMS and Median) after 7-parameter transformation.
- 6+5 model shows better alignment (smaller rotation) with less scatter to IGR.


PREDICTION vs. IGB: 2010 001 to 365

Results (cont'd)

7-Parameter Transformation Statistics over One Year

- ☐ All 7 parameters show the best stable results for the arc lengths range between 40 and 45 hours.
- ☐ Orbit predictions using 6+5 model show smaller rotations wrt the IGS Rapid orbits. (See green bands in the rotation plots below)

Conclusion

Implication on the ultra-rapid orbit prediction strategy

- ☐ In real processing, one has no "truth" orbit to compare with at the time of processing.
- ☐ Optimal arc length of observed orbits to fit is around 40-45 hours.
- ☐ According to the results of this study, if we rotationally align the predicted orbit from 6+9 model to 6+5 model orbit, we will achieve statistically the best predicted GPS orbits with:

	First 6 hours	24 hours
WRMS residual	4.0 mm	24.6 mm
Median residual		
Rotational scatter		~27.3 mm (0.2 mas)

- ☐ Translational and scale scatter is insignificant.
- ☐ The actual prediction performance will also be affected by errors in the EOP predictions required to transform from the inertial reference frame to an Earth-fixed frame. In practice, the EOP prediction errors usually dominate.

References and Acknowledgement

[1] T. A. Springer, G. Beutler, M. Rothacher, (1998) A new Solar Radiation Pressure Model for the GPS Satellites, IGS Analysis Center Workshop, ESOC, Darmastadt, Germany. [2] NOAA/NGS Analysis Strategy Summary (http://igscb.jpl.nasa.gov/igscb/center/analysis/noaa.acn)

Thanks to:

For Combined GPS orbit data Dynamic models orientation rapid service

For Earth

For providing Earth