Global Navigation Satellite Systems and Ionospheric Remote Sensing

Jade Morton

Miami University

Our Increasing Dependence on GNSS Services,

Global Navigation Satellite Systems & Ionosphere

- **1.** Ionosphere background
- **2.** First order ionosphere error and TEC
- **3.** Higher order ionosphere error
- **4.** Ionosphere scintillation

Ionosphere Background

Ionosphere Refractive Index

Electron Gryo Frequency

 f_g : Rate of electrons cycling along the **B** field line

$$f_g = \frac{|e|B}{2\pi m_e} \approx 28 \times 10^9 B \approx 1 MHz$$

$$\downarrow$$
30,000nT ~ 3x10⁻⁵ T

Plasma Frequency

 f_p : Rate of electron oscillations in a plasma

$$f_p = \frac{1}{2\pi} \sqrt{\frac{N_e e^2}{m_e \varepsilon_0}} \approx 9\sqrt{N_e} \approx 9MHz$$

Peak ionosphere N_e value: 1 million/cc

Simplified Appleton-Hartree Equation

$$f_g \approx 1MHz \longrightarrow Y = \frac{f_g}{f}$$
 $f_p \leq 10MHz \longrightarrow X = \left(\frac{f_p}{f}\right)^2$

At GPS frequency, $f \sim \text{GHz}$: $X \ll 1$ $Y \ll 1$

$$n_{\phi} = 1 - \frac{X}{1 - \frac{Y^2 \sin^2 \theta_B}{2(1 - X)}} \pm \sqrt{\frac{Y^4 \sin^4 \theta_B}{4(1 - X)^2}} + Y^2 \cos^2 \theta_B$$

Ionosphere Error in GNSS Measurements

$$n_{\phi} \approx 1 - \frac{40.3N_{e}}{f^{2}} \pm \frac{f_{g}f_{p}^{2}}{2f^{3}} |\cos \theta_{B}| - \dots \qquad n_{\rho} = n_{\phi} + f \frac{dn_{\phi}}{df}$$

$$I_{\phi} = \int (n_{\phi} - 1)dl \qquad \qquad I_{\rho} = \int (n_{\rho} - 1)dl$$

$$I_{\rho} = \frac{q}{f^{2}} + \frac{s}{f^{3}} + \frac{r}{f^{4}} + \dots \qquad \qquad I_{\phi} = -\frac{q}{f^{2}} - \frac{s}{2f^{3}} - \frac{r}{3f^{4}} + \dots$$

First order ionosphere error: $q = 40.3 \times \int N_e dl = 40.3 \text{TEC}$

Second order ionosphere error: $s = 7527c \int N_e B_0 \cos \theta_B dl$

3rd order:
$$r = 2437 \int N_e^2 dl + 4738 \times 10^{22} \int N_e B_0^2 (2 + \cos^2 \theta_B) dl$$

First Order Ionosphere Error

First Order Ionosphere Error Mitigation

Differential Code Biases (DCBs)

Global lonosphere Map (GIM):

- Network of dual frequency receivers distributed around the globe
- Some receiver DCBs are calibrated
- Antenna installations minimize multipath impact

• Multiple measurement epochs are used to solve for TEC and SV DCBs NGS TEC map:

• National CORS measurements

A TEC Spatial Gradient-Based Algorithm

How Sound Is the TEC Spatial Gradient Assumption?

Oxford, OH 3/24/2011

Algorithm Description

 $\Delta \rho^{SV} = \beta \times MF \times \left(VTEC_0 + \frac{\partial VTEC}{\partial \lambda} \Delta \lambda_{IPP}^{SV} + \frac{\partial VTEC}{\partial \varphi} \Delta \varphi_{IPP}^{SV} \right) + c \left(\Delta b_{RX} + \Delta b^{SV} \right)$ At time epoch k, there are N_k satellites in view $\rightarrow N_k$ equations, $4+N_k$ unknowns. Maximum total number of unknowns from K epochs: 3K+33Total number of equations: $\sum N_k$ $\beta = 40.3 \frac{f_{L2}^2 - f_{L1}^2}{f_{L1}^2 f_{L2}^2} \quad g = \frac{\beta}{c} \times MF \quad x = VTEC_0 \quad y = \frac{\partial VTEC}{\partial \lambda} \quad z = \frac{\partial VTEC}{\partial \varphi} \quad \delta_{n,m} = \begin{cases} 1 & \text{if } m = SV_n \\ 0 & \text{otherwise} \end{cases}$ NGS Washington DC 05/22/13 Slide 15

VTEC Comparison With GIM

SV and RX DCB Estimation

DCB(32 GPS Satellites) compared with GIM

TEC Gradient Solution

ERSITY

Sparse Network TEC and DCB Estimation

NGS Washington DC 05/22/13

ERSITY

TEC Spatial Gradients From A Sparse Network

IVERSITY

- **1.** Use of multi-constellation GNSS measurements
- **2.** Joint GNSS receiver and incoherent scatter radar experiments
- **3.** Performance evaluations at diverse geographical locations
- **4.** Introduce IPP height as a new variable
- **5.** Introduce vertical Ne profile dependency
- **6.** Introduce RX DCB as a time-varying quantity
- **7.** Impact on PPP performance evaluation

Higher Order Ionosphere Error

Rough Estimation of Iono Error

$$TEC: 60 \text{ units } (1 \text{ unit}=10^{16} \text{ el/m}^2)$$

$$q = 40.3TEC \qquad 1^{\text{st}} \text{ order:} \quad \frac{q}{f^2} = 10m$$

$$B_0: \sim 30000 \text{ T} \text{ TEC:} 60 \text{ units}$$

$$s = 7527c \int N_e B_0 \cos \theta_B dl \le 7527c B_0 \int N_e dl = 7527c B_0 TEC \qquad 2^{\text{nd}} \text{ order:} \quad \frac{s}{f^3} \approx 1cm$$

$$B_{0}: \sim 30000 \text{ T TEC:60 units Uniform Ne in } \Delta L: 100 \text{ km}$$

$$r_{1} = 2437 \int N_{e}^{2} dl \approx 2437 N_{e}^{2} \Delta L \approx 2437 \frac{TEC^{2}}{\Delta L} \qquad 3^{\text{rd order:}} \qquad \frac{r_{1}}{f^{4}} \approx 1 \text{ mm}$$

$$r_{2} = 4738 \times 10^{22} \int N_{e} B_{0}^{2} (2 + \cos^{2} \theta_{B}) dl \leq 10^{26} B_{0}^{2} TEC \qquad \frac{r_{2}}{f^{4}} \approx 0.01 \text{ mm}$$

How To Accurately Estimate Higher Order Error?

B field:

International Geomagnetic Reference Field (IGRF) model, 11th Generation

Question: How good is the model in ionosphere?

IGRF Model Validation

Low Earth Orbit Satellite-Based Magnetometers (100 - 1000 km) Over 600 GB satellite measurements analyzed

MAGSAT (NASA) 300-600 km altitude November 2, 1979 – May 6, 1980.

Ørsted (Danish Meteorological Institute) 630 – 860 km altitude March 1999 – Present

SAC-C (Argentine Commission on Space Activities) 702 km altitude January 23, 2001 – December 4, 2004

> **CHAMP** (Germany) 350-450 km altitude May 15, 2001 – Present

DEMETER (France) 660 – 715 km altitude August 11, 2004 - Present

MIAMI UNIVERSITY

11th Generation IGRF Validation Results

NGS Washington DC 05/22/13

Multiple ISR Measurements

Ionosphere Radio Occultation

Higher Order Error Spatial Behavior

MIAMI UNIVERSITY

MAIN

Ionospheric Scintillation

Iono. Scintillation Conceptual Description

High latitude: Mainly driven by solar and magnetosphere activities

Low latitude:

Ionosphere internal mechanisms

+ modulation by solar activities

NGS WBasu, S. et al, "Specification and forecasting of
scintillations in communication & navigation links: current
status and future plans," J. Atmos. Solar-Terr. Phy., 2002.

Strong Equatorial Scintillation: Simultaneous Deep Fading and Large Phase Fluctuation

ERSITY

Conflicting Demands on Scintillating GNSS Signal Tracking

- **Data Collection:** Establish high quality scintillation event monitoring and data collection stations at both high and low latitude scintillation zone.
- **Ionosphere Characterization:** Develop accurate signal parameter estimation techniques to characterize scintillation behavior for ionosphere research and GNSS receiver development.
- <u>Receiver Algorithms:</u> Develop robust GNSS tracking algorithms to ensure continuity and accuracy of navigation solutions during space weather events.

Existing GNSS Space Weather Monitoring Systems Issues

- 1. Commercial GNSS receivers are designed for **PNT** solutions. They are not optimized for **remote sensing** applications.
- Space weather events are Nuisances for PNT. Receiver signal processing will hide them → Measurements are not true representation of physical processes in space.
- 3. Receiver design and signal processing are **proprietary**. Users have **no knowledge** of specific processing used.
- 4. Receivers break down during strong space weather events. Critical data cannot be collected when needed most.

High quality, raw GNSS RF data are needed for Ionosphere studies and robust GNSS receiver development

Event Driven Wideband IF Data Collection System

ERSITY

HAARP (Gakona, Alaska)

Lat: 62.39°, Lon: 145.15°W

HAARP GNSS Receiver Array

NIVERSITY

Scintillation Event Trigger Example

ERSITY

Multi-Constellation GNSS → Spatial Observability

GPS (with L2C) GLONASS Galileo Beidou

05/19/2013 HAARP, Alaska (62.39°N,145.15°W) 24-hour satellite path

A New Global GNSS Space Weather Data Collection Network

ERSITY

Strategic Site Selection for Collaborative Research

High Latitude Scintillation Spatial Distribution

Slide 47

High Latitude Scintillation Temporal Distribution

ERSITY

Event Duration Distribution

NGS Washington DC 05/22/13

λιαμι

ERSITY

NGS Washington DC 05/22/13

Slide 50

10 30 F 20 positioning error / cm 10 0 **Scintillation** -10 Impact on PPP -20 Hong Kong -30 0.5 ,12 08/31/2012 S_4 / rad σ Satellite Number 0.4 -10 scintllation intensity 0.3 8 0.2 0.1 0 114 1/1 18 19 20 21 22 23 0 2 1 RSITY H LT / hour

11

12

UTC / hour

14

13

15

16

17

18

satellite number

Robust Receiver Tracking: Vector Loop vs. Scalar Loop

'ERSITY

Ascension Island Strong Scintillation Vector Tracking

Computation performance is a major challenge!!!

Ionospheric Scintillation On-Going Efforts

- Deployment enhancement
- Data analysis on GLONASS, Galileo, and Compass signals
- Multi-frequency scintillation analysis
- Accurate signal parameter estimation algorithms
- Real time receiver processing
- Scintillation tomography
- Global scintillation climatology
- Joint experimental campaign with other remote sensing instruments

