STATUS & PROSPECTS FOR IGS POLAR MOTION MEASUREMENTS

- Why does the IGS care about EOPs?
 - observations, predictions, & IGS product table
- Recent pole & pole-rate accuracies & error sources
 - Rapid & Final products
 - Ultra-rapid products
- Improvements possible from better networks, new GNSSs, reduced systematic errors

Jim Ray, NOAA/NGS

Rémi Ferland, Natural Resources Canada

IERS Workshop on EOP Combination & Prediction, Warsaw, 19 October 2009 – session 1.1

Why Does the IGS Care About EOPs?

- post-processed EOP observations
 - needed to relate GNSS orbits (in ITRF in SP3 files) to quasi-inertial frame
 - pole very useful to tie GNSS frame to other technique frames
 - valuable for geoscience & EOP monitoring services due to high accuracy

• EOP predictions

- required for Ultra-rapid GNSS orbit predictions

IGU Orbit Prediction Differences wrt IGS Rapids (units = mm)										
	dX	dY	dZ	RX	RY	RZ	SCL	RMS	wRMS	Medi
mean	3.1	0.7	0.8	-8.0	-0.5	0.5	-0.7	31.4	23.9	17.9
±	4.7	4.0	3.3	20.8	24.3	34.7	0.7	14.0	6.2	3.0
* for first 6 hr of each prediction during 2008.5-2009: rotations are equatorial @ GPS altitude										

Why Does the IGS Care About EOPs?

- post-processed EOP observations
 - needed to relate GNSS orbits (in ITRF in SP3 files) to quasi-inertial frame
 - pole very useful to tie GNSS frame to other technique frames
 - valuable for geoscience & EOP monitoring services due to high accuracy

• EOP predictions

required for Ultra-rapid GNSS orbit predictions

IGU Orbit Prediction Differences wrt IGS Rapids (units = mm)											
	dX	dY	dZ	RX	RY	RZ	SCL	RMS	wRMS	Medi	
mean	3.1	0.7	0.8	-8.0	-0.5	0.5	-0.7	31.4	23.9	17.9	
Ŧ	4.7	4.0	3.3	20.8	24.3	34.7	0.7	14.0	6.2	3.0	
_											

* for first 6 hr of each prediction during 2008.5-2009; rotations are equatorial @ GPS altitude

- RZ rotation errors (= UT1 predictions) are largest real-time error source

Why Does the IGS Care About EOPs?

- post-processed EOP observations
 - needed to relate GNSS orbits (in ITRF in SP3 files) to quasi-inertial frame
 - pole very useful to tie GNSS frame to other technique frames
 - valuable for geoscience & EOP monitoring services due to high accuracy

• EOP predictions

- required for Ultra-rapid GNSS orbit predictions

IGU Orbit Prediction Differences wrt IGS Rapids (units = mm)										
	dX	dY	dZ	RX	RY	RZ	SCL	RMS	wRMS	Medi
mean	3.1	0.7	0.8	-8.0	-0.5	0.5	-0.7	31.4	23.9	17.9
±	4.7	4.0	3.3	20.8	24.3	34.7	0.7	14.0	6.2	3.0

* for first 6 hr of each prediction during 2008.5-2009; rotations are equatorial @ GPS altitude

- RZ rotation errors (= UT1 predictions) are largest real-time error source
- RX, RY (= polar motion predictions) & wRMS scatters next largest
- RZ rotation errors 50% larger than PM systematic or wRMS random errors

IGS EOP Product Table (2009)

Series	EOP Comp.	Estimated Accuracy	Latency	Updates	Sample Interval
Ultra-Rapid (predicted half)	PM PM rate LOD	250 μas ~500 μas/d ~50 μs	real time	@ 03, 09, 15, 21 UTC	±12 hr integrations @ 00, 06, 12, 18 UTC
Ultra-Rapid (observed half)	PM PM rate LOD	<50 µas 250 µas/d ~10 µs	3 - 9 hr	@ 03, 09, 15, 21 UTC	±12 hr integrations @ 00, 06, 12, 18 UTC
Rapid	PM PM rate LOD	<40 µas 200 µas/d ~10 µs	17 - 41 hr	@ 17 UTC daily	±12 hr integrations @ 12 UTC
Final	PM PM rate LOD	<30 µas 150 µas/d ~10 µs	11 - 17 d	each Wednesday	±12 hr integrations @ 12 UTC

* 100 μ as = 3.1 mm of equatorial rotation; 10 μ s = 4.6 mm of equatorial rotation

* IGS uses IERS Bulletin A to partly calibrate for LOD biases over 21-d windows, but residual LOD errors remain

Recent Rapid & Final Polar Motion Accuracy

- ITRF2005 multi-technique combination experience
 - scaled formal errors ~30 μas for daily PM-x & PM-y
 - equivalent to net equatorial rotation errors of ~1 mm
- IGS GPS heavily dominates multi-technique combinations
 - due to robust global network & continuous, high-accuracy data
 - SLR & VLBI networks are sparse, non-uniform, & irregularly observed
 - SLR & VLBI PM contribute to rotational frame alignments, less for EOPs
 - DORIS PM noisy due to limited satellite constellation
- GPS PM errors probably nearing asymptotic limit (~20 µas)
 - since increase in IGS RF to 99+ sites (Jan. 2004), PM errors <~30 μas
 - PM accuracy limited by: orbit mismodeling, subdaily EOP tide model errors, & AC solution constraints
 - IGS Rapid EOPs about 25 to 50% poorer than Finals
 - evidence for fortnightly & longer-period errors
 - IGS reprocessing campaign will improve old PM results (back to ~1995)

Years	Rapid		Final		Δ(Rapid-Final)		
(units = µas)	<σ _x >	<σ _v >	<σ _x >	<σ _v >	$<\Delta x> \pm SDev$	<∆y> ± SDev	
1999-2001.5	77.3	85.9	44.1	44.4	119.9 ± 153.2	-29.7 ± 113.8	
2001.5-2003	47.5	47.3	33.3	35.0	65.4 ± 73.9	6.3 ± 70.0	
2004-2006	34.0	39.5	25.6	27.2	7.2 ± 38.7	-1.7 ± 38.8	
2007-2009.5	24.3	27.7	20.1	20.1	-4.8 ± 28.9	-1.4 ± 31.1	

Spectra of (Rapid-Final) PM Differences

- High-frequency noise consistent with ~30 µas accuracy
 - but longer period errors might be significant
 - fortnightly feature near 14.2 d may signify tide model errors

PM Differences among IGS ACs

AC Final X-Pole Differences with IGS Final COD 0 EMR -1 -2 ESA X-Pole Difference [mas] -3 GFZ JPL -4 -5 MIT - NGS -7 SIO -8 - IRF -9 - IGR 1470 1480 1490 1500 1510 1520 1530 1540 Time [GPS weeks]

- Differences among ACs reflect mostly analysis variations
 - networks, geophysical models, & parameterizations quite similar
 - main analysis differences relate to orbit dynamics & solution constraints

Recent Final PM-Rate Accuracy

- ITRF2005 multi-technique combination experience
 - scaled formal errors ~90 μas/d for PM-xrate & PM-yrate
 - but these estimates are optimistic
- IGS GPS also dominates PM-rate combinations
- GPS PM-rate errors can be assessed by examining day-boundary discontinuities
- PM-rates very sensitive to subdaily EOP tide model errors
 - imply IERS2003 errors for K1, O1, Q1/N2, & probably other lines
 - odd numbered harmonics of 1.04 cpy point to orbit errors
 - estimated IGS PM-rate errors: ~140 μas/d for xrate; ~180 μas/d for yrate
 - PM-yrate errors larger due to greater 1.04 cpy orbit harmonics
- For excitation studies, probably best to use PM time differences, not directly observed PM-rates

Compute Polar Motion Discontinuities

Days

• Examine PM day-boundary discontinuities for IGS time series

- should be non-zero due to PM excitation & measurement errors

- Common peaks seen in most AC spectra are:
 - annual + 5th & 7th harmonics of GPS year (351 d or 1.040 cpy)
 - probably aliased errors of subdaily EOP tide model (IERS2003)

- Compare TPXO7.1 & IERS2003 (used by IGS) EOP models
 - TPXO7.1 & GOT4.7 test models kindly provided by Richard Ray
 - assume subdaily EOP model differences expressed fully in IGS PM results

- Aliasing of subdaily EOP tide model errors probably explains:
 - annual (K1, P1, T2), 14.2 d (O1), 9.4 d (Q1, N2), & 7.2 d (σ 1, 2Q1, 2N2, μ2)
- Orbit errors presumably responsible for odd 1.04 cpy harmonics

Recent Ultra-rapid Polar Motion Accuracy

- IGU observed EOPs updated every 6 hr
 - latency is 15 hr for each update
 - each EOP value is integrated over 24 hr
 - polar motion accuracy recently: <50 μas (1.5 mm)</p>
 - reported formal errors are generally reliable
- IGU predicted EOPs updated every 6 hr
 - for real-time applications
 - issued 9 hr before EOP epoch
 - polar motion prediction accuracy recently: ~250 μas (7.7 mm)
 - reported formal errors are too optimistic by a factor of ~4
 - most ACs now generate their own EOP predictions internally rather than use IERS predictions
 - IGS near-term EOP predictions usually better than values from IERS (due to use of most recent IGU observations)

Years	Ultra-	rapid	Final		Δ(Ultra-Final)		
(units = µas)	<σ _x >	<σ _y >	<σ _x >	<σ _γ >	$<\Delta x> \pm SDev$	<∆y> ± SDev	
2000.2-2002	136.2	135.7	38.2	40.4	20.5 ± 213.8	2.9 ± 192.6	
2003-2005.5	73.8	74.2	27.2	28.7	37.0 ± 93.5	7.0 ± 81.0	
2005.5-2007	51.9	63.6	23.8	25.1	17.1 ± 59.9	10.8 ± 59.9	
2008-2009.7	31.7	32.6	18.8	18.2	12.7 ± 33.6	-18.5 ± 41.1	

Spectra of (Ultra Observed-Final) PM Differences

- High-frequency noise consistent with ~50 µas accuracy
 - not much coherent long-period errors
 - possible minor features near 7 d & 14.2 d

MJD (08 Nov 2006 - 19 Sep 2009)

Years	Ultra-rapid		Final		Δ(Ultra-Final)		
(units = µas)	<σ _x >	<σ _y >	<σ _x >	<σ _γ >	$<\Delta x> \pm SDev$	<∆y> ± SDev	
2006.9-2007	119.0	109.7	21.7	22.7	-39.3 ± 288.0	9.7 ± 221.2	
2008	80.1	75.0	18.8	18.3	-13.2 ± 271.8	-37.3 ± 239.1	
2009-2009.7	65.9	59.0	18.9	18.2	-6.9 ± 266.6	12.7 ± 184.3	

 \rightarrow Multi-technique EOP combinations mostly sub-optimal ! \leftarrow

Conclusions

- Since 2004.0 IGS Final polar motion accuracy <~30 μas
 - robust global network is prime factor
 - Rapid PM is only slightly poorer, <~40 μas
- GPS PM nearing asymptotic limit for random errors (~20 µas)
 - smaller systematic errors possible with new GNSSs, better orbit modeling, & better handling of solution constraints
 - better PM-rates require new subdaily EOP tide model & reduced orbit effects – prospects currently unclear
- IGS Ultra-rapid observed PM accuracy currently <50 μas
 - updated 4 times daily with 15 hr latency
 - should be used by EOP prediction services !
- IGS Ultra-rapid orbit predictions (real-time use) are limited by EOP prediction errors (esp UT1)
 - IERS predictions are not adequate
 - IGS ACs generate better near-term EOP predictions internally