IGS Preparations for the Next Reprocessing and ITRF

- what is IG2?
- who will contribute?
- expected performance
- remaining issues

NOAF

Jake Griffiths, NOAA/National Geodetic Survey Paul Rebischung, Institut Géographique National Bruno Garayt, Institut Géographique National Jim Ray, NOAA/National Geodetic Survey

How will IG2 Differ from IG1?

- more details at <u>http://acc.igs.org/reprocess2.html</u> -

- Longer data span (~1994 thru mid-2012)
 - IG2 + operational prods thru 2013 -> IGS contribution to next ITRF
- Updated models, frames & methodologies
 - IERS 2010 Conventions
 - IGS08.SNX/igs08.atx framework (possibly updated version IGb08)
 - AC SINEX files based on 1d TRF integrations (w/ consistent non-TRF products)
 - improve sampling of non-tidal loading displacements
 - reduces distortions in non-TRF prods (slightly noisier)
 - but no non-tidal atmospheric loading at obs eqn
 - some ACs to apply 2nd order iono corrections
 - Earth-reflected radiation pressure (albedo) modelling
 - reduce ~2.5 cm radial bias w.r.t. SLR [e.g. Urschl et al., 2007; Zeibart et al., 2007]
 - satellite-attitude modelling by all clock ACs
 - satellite antenna PCOs included in long-term TRF stacking
- Sub-daily alias and draconitic errors will remain
 - [e.g. Griffiths & Ray, in prep]
 - new diurnal & semi-diurnal EOP tide model needed
- Final preps and initial processing by mid-2012
- Expect to deliver SINEX files for next ITRF by late 2013

Expected AC and IG2 Products

- more details at <u>http://acc.igs.org/reprocess2.html</u> -

• Daily GPS orbits & satellite clocks

- 15-minute intervals (SP3c format)
- clocks in IGS timescale
- Daily satellite & tracking station clocks
 - 5-minute intervals (clock RINEX format)
 - in IGS timescale

Daily Earth rotation parameters (ERPs)

- from SINEX & classic orbit combinations (IGS erp format)
- x & y coordinates of pole
- rate-of-change of x & y pole coordinates (should not be used due to sensitivity to subdaily tidal errors)
- excess length-of-day (LOD)
- Weekly (IG2 only) & daily terrestrial coordinate frames with ERPs
 - with full variance-covariance matrix (SINEX format)
- May also provide (TBD)
 - daily GLONASS orbits & satellite clocks
 - 30-second GPS clocks in IGS timescale
 - ionosphere maps, tropospheric zenith delay estimates
 - new bias products

Who will Contribute to IG2?

- more details at <u>http://acc.igs.org/reprocess2.html</u> -

• All IGS Final-product Analysis Centers:

- CODE/AIUB Switzerland
- EMR/NRCan Canada
- ESA/ESOC Germany
- CNES/GRGS Toulouse, France
- GFZ Potsdam, Germany

- JPL–USA
- MIT–USA
- NGS/NOAA USA
- SIO USA

- Plus 1 reprocessing Center
 - ULR University of La Rochelle TIGA (tide gauges), France

• Plus 1 Center contributing to TRF only:

- GFZ TIGA – Potsdam, Germany

COMPARISON OF EXPECTED AC DATA USAGE							
ANALYSIS CENTER	SYSTEM	OBS TYPE	ORBIT DATA ARC LENGTH	DATA RATE	ELEVATIO N CUTOFF	ELEVATION INVERSE WGTS	
CODE	GPS + GLO	DbDiff (weak redundant)	24 + 24 + 24 h	3 min	3 deg	1/cos²(z)	
EMR	GPS	UnDiff	24 h	5 min	10 deg	none	
ESA	GPS + GLO	UnDiff	24 h	5 min	10 deg	1/sin² (e)	
GFZ (& GTZ)	GPS + ?GLO?	UnDiff	24 + 24 + 24 h	5 min	7 deg	1/2sin(e) for e < 30 deg	
GRG	GPS	UnDiff	24 h	5 min	10 deg	none	
JPL	GPS	UnDiff	3 + 24 + 3 h	5 min	7 deg	none	
MIT	GPS	DbDiff (weak redundant)	24 h (SRPs over 9d)	2 min	10 deg	a ² + (b ² /sin ² (e)) a,b from site residuals	
NGS	GPS	DbDiff (redundant)	24 h	30 s	10 deg	[5 + (2/sin(e)) cm] ²	
SIO	GPS	DbDiff (weak redundant)	24 h	2 min	10 deg	a ² + (b ² /sin ² (e)) a,b from site residuals	
ULR	GPS	DbDiff (weak redundant)	24 h	3 min	10 deg	a ² + (b ² /sin ² (e)) a,b from site residuals	

COMPARISON OF EXPECTED AC SATELLITE DYNAMICS							
ANALYSIS CENTER	NUTATION & EOPs	SRP PARAMS	VELOCITY BRKs	ATTITUDE	SHADOW ZONES	EARTH ALBEDO	
CODE	IAU 2000A _{R06} ; BuA ERPs	D,Y,B scales; B 1/rev	every 12 hr + constraints	nominal yaw rates used	E+M: umbra & penumbra	? applied ?	
EMR	IAU 2000A _{R06} ; BuA ERPs	X,Y,Z scales stochastic	none	yaw rates estimated	E: umbra & penumbra	applied	
ESA	IAU 2000; BuA ERPs	D,Y,B scales; B 1/rev	none; Along, Along 1/rev accelerations	nominal yaw rates used	E+M: umbra & penumbra	applied + IR	
GFZ (& GTZ)	IAU 2000; GFZ ERPs	D,Y scales	@ 12:00 + constraints	yaw rates estimated	E+M: umbra & penumbra	applied + AT	
GRG	IAU 2000; IERS C04 & BuA ERPs	D,Y scales; X & D 1/rev	stoch. impulse during ecl.	yaw rates estimated	E+M: umbra & penumbra	applied + IR	
JPL	IAU 2000A _{R06} ; IERS CO4	X,Y,Z scales stochastic	none	yaw rates estimated	E+M: umbra & penumbra	applied	
MIT	IAU 2000; BuA ERPs	D,Y,B scales; B(D,Y) 1/rev	none; 1/rev constraints	nominal yaw rates used	E+M: umbra & penumbra	applied	
NGS	IAU 2000; IGS PM; BuA UT1	D,Y,B scales; B 1/rev	@ 12:00 + constraints	none; del eclipse data	E+M: umbra & penumbra	applied + AT	
SIO	IAU 2000; BuA ERPs	D,Y,B scales; D,Y,B 1/rev	none; 1/rev constraints	nominal yaw rates used	E+M: umbra & penumbra	applied	
ULR	IAU 2000; BuA ERPs	D,Y,B scales; D,Y,B 1/rev	none	nominal yaw rates used	E+M: umbra & penumbra	applied	

COMPARISON OF EXPECTED AC TIDAL MODELS						
ANALYSIS CENTER	SOLID EARTH	EARTH POLE	OCEAN LOAD	OCEAN POLE	OCEAN CMC	SUBDAILY EOPs
CODE	IERS 2010; dehanttideinel.f	eqn 23a/b mean pole	FES2004; hardisp.f	none	sites & SP3	IERS 2010; subd nutation
EMR	IERS 2010	eqn 23a/b mean pole	FES2004; hardisp.f	none	sites & SP3	IERS 2010
ESA	IERS 2010; dehanttideinel.f	eqn 23a/b mean pole	FES2004; hardisp.f	none	sites & SP3	IERS 2010 & PMsdnut.for
GFZ (& GTZ)	IERS 2010	eqn 23a/b mean pole	FES2004	none	sites & SP3	IERS 2010; PMsdnut.for
GRG	IERS 2010	eqn 23a/b mean pole	FES2004	none	sites & SP3	IERS 2010
JPL	IERS 2010	eqn 23a/b mean pole	FES2004; hardisp.f	none	sites & SP3	IERS 2010
MIT	IERS 2010	eqn 23a/b mean pole	FES2004	none	sites & SP3	IERS 2010
NGS	IERS 2010; dehanttideinel.f	eqn 23a/b mean pole	FES2004; hardisp.f	none	sites & SP3	IERS 2010 & PMsdnut.for
SIO	IERS 2010	eqn 23a/b mean pole	FES2004	none	sites & SP3	IERS 2010
ULR	IERS 2010	eqn 23a/b mean pole	FES2004	none	sites & SP3	IERS 2010

COMPARISON OF EXPECTED AC GRAVITY FORCE MODELS							
ANALYSIS CENTER	GRAVITY FIELD	EARTH TIDES	EARTH POLE	OCEAN TIDES	OCEAN POLE	RELATIVITY EFFECTS	
CODE	EGM2008; C21/S21 due to PM	IERS 2010	IERS 2010	IERS 2010 – FES2004	none	dynamic corr & bending applied	
EMR	EGM2008	IERS 2010	IERS 2010	IERS 2010 – FES2004	none	no dynamic corr; bending applied	
ESA	EIGEN-GL05C	IERS 2010	IERS 2010	IERS 2010 – FES2004	none	dynamic corr & bending applied	
GFZ (& GTZ)	JGM3; C21/S21 due to PM	IERS 2010	IERS 2010	IERS 2010 – FES2004	none	no dynamic corr & bending applied	
GRG	EIGEN GL04S; C21/S21 due to PM	IERS2010	IERS 2010	IERS 2010 – FES2004	none	dynamic corr; bending applied	
JPL	EGM2008; C21/S21 due to PM; C20, C30, C40	IERS 2010	IERS 2010	IERS 2010 – FES2004 Desai & Yuan	IERS 2010; eqn 6.23a	dynamic corr & bending applied	
MIT	EGM2008; C21/S21 due to PM	IERS 1992; Eanes Love #	none	none	none	no dynamic corr; bending applied	
NGS	EGM2008	IERS 2010	IERS 2010	IERS 2010 – FES2004	none	dynamic corr & bending applied	
SIO	EGM2008; C21/S21 due to PM	IERS 1992; Eanes Love #	none	none	none	no dynamic corr; bending applied	
ULR	EGM2008; C21/S21 due to PM	IERS 1992; Eanes Love #	none	none	none	no dynamic corr; bending applied	

- WRMS of AC repro1 orbits wrt IG1 -

- WRMS of AC repro1 orbits wrt IG1 -

- WRMS of AC repro1 orbits wrt IG1 -

NOAA NGS, 24.03.2012 19:21 (GMT)

NOAA NGS, 24.03.2012 19:21 (GMT)

- Rotational scatter of AC orbits wrt IGS -

- First ~15 weeks of IGS08, scatter in most AC rotations quite small
 - increase in scatter correlated
 w/decrease in # of "core" stations
- Rotational errors for single AC distort the combined orbit (see RY for ESA @ ~1660)
 - long-term orientation of IG2 orbit frame maybe improved over IG1, but rotational scatter still dominates

- IGS orbit jumps as measure of orbit inaccuracy -

- Lack of an independent "truth" for IGS orbits
 - can compute discontinuities between daily orbit sets
 - doing so aliases sub-daily differences into longer-period signals
 - approach can reveal systematic errors

• Orbit jumps

- fit orbits for each day with BERNE (6+9) orbit model
- parameterize fit as X, Y, Z, X, Y, Z
 plus 3 SRPs per SV component

- fit 96 SP3 orbit positions for each SV as pseudo-observations for Day A
- propagate fit forward to 23:52:30 for Day A
- repeat for Day B & propagate backwards to 23:52:30 of day before
- compute IGS orbit jumps at 23:52:30
- Compute IGS orbit jumps over recent ~5.6 yr span

- IGS orbit jumps as measure of orbit inaccuracy (cont.) -

- IGS orbit jumps computed from Berne model fit to adjacent days
 - compute spectra for each SV orbit jump set, stack & smooth
 - "calibrated" for errors due to (fit + extrapolation) method

- IGS orbit jumps as measure of orbit inaccuracy (cont.) -

- IGS orbit jumps computed from Berne model fit to adjacent days
 - compute spectra for each SV orbit jump set, stack & smooth
 - "calibrated" for errors due to (fit + extrapolation) method

- RMS of Current AC TRFs wrt IGS -

- Improvement in precision expected from:
 - horizontal tropo gradients estimated by all ACs
 - 2nd order iono corrections
 - Earth-reflected radiation pressure (albedo) modelling

Improvement in accuracy expected from:

- igs08.atx (depending on antenna type)
- Switch to daily AC TRFs:
 - should not impact quality of weekly combined TRFs (input to ITRF)

IG2 contribution to the next ITRF

- Contribution to the ITRF scale rate?
 - satellite PCOs will be included in combination & stacking of IG2 TRFs.
 - assumption that PCOs are constant \rightarrow "intrinsic GNSS scale rate"
- No contribution to the ITRF origin yet
 - remaining unmodeled orbital forces
 - origins of IG2 TRFs likely not reliable enough

• Systematic errors will remain!

- main source: antenna calibrations
 - > 1 cm errors revealed at stations with uncalibrated radomes
 - few mm errors likely at stations with "converted" antenna calibrations
- will cause trouble in use of local ties for ITRF colocation sites
 - consider to exclude in next ITRF

Antenna calibration types at co-located ITRF2008 GNSS stations

Summary (1/2)

- Latest models, frames & methods to have largest impact since IG1
 - IERS 2010 Conventions
 - IGS08/igs08.atx framework
 - Earth-reflected radiation pressure (albedo) modelling
 - sub-daily & draconitic signatures will remain
- To result in full history of IG2 products (1994 to present)
 - truly daily products (assuming all ACs remove overconstraints & smoothing):
 - GPS orbits & SV clocks (SP3c) @ 15 min intervals
 - GPS SV and station clocks (clock RINEX) @ 5 min intervals
 - Earth Rotation Parameters (IGS ERP)
 - terrestrial coordinate frames (IERS SINEX)
 - expected delivery for next ITRF -> late 2013
- And possibly some ancillary products
 - GLONASS orbits & clocks
 - 30-second SV & station clocks
 - bias products

Summary (2/2)

- Generally, IGS aims for ~1 cm orbit & ~1 mm terrestrial accuracies
 - to meet needs of most demanding user applications
- Performance of current IGS products quite good
 - GPS orbits
 - overall <2.5 cm (1D)
 - errors dominated primarily by rotational scatter in AC orbital frames
 - random noise ~1.6 cm
 - sub-daily alias and draconitic errors from IERS diurnal/semi-diurnal tides
 - EOPs [Ray & Griffiths; G5.1 Monday AM]
 - PM-x & PM-y: <30 μas
 - dLOD: ~10 μs
 - terrestrial frames (weekly)
 - ~2 mm N&E
 - ~5 mm U
- IG2 quality should approach current IGS prods, maybe better
 - quality for later (~2000 -> present) IG2 products will be best
 - early IG2 probably better than IG1 equivalents, but not as good as later IG2

Extra Slides