

Dynamic Effects in Gravimetry:			
An Assessment of the Current State of Knowledge Theresa M. Damiani NOAA-National Geodetic Survey, 1315 East-West Hwy, SSMC3, Silver Spring, MD 20910; theresa.damiani@noaa.gov G51B-0362		Decreasin Local Pressure Loading - Max value: ~27 μGal - Within 50 km of station - Rate: ~0.2 μGal/min - Nominal: ~ 0.3 to 0.4 μGal / mbar - Best accuracy when modeled at station - Error: If hourly pressure measurements, accounting for topography, and reason- able weather, < 200 nGal. ~ 400 nGal in extreme weather. Refs: [1, 2, 3, 4, 29]	Agginitude Regional Pressure Loadin - Max value: 1-2 μGal - 50 - 1000 km from station - Linear. ~ 0.078 μGal / mbar - Error: If 1 barometer at station, Gal. If sparse network around stat <100 nGal. Topography errors around nGal / km. Non-nominal air temp structure yields up to 30 nGal. Refs: [1, 2, 3, 4]
1. Background Technology for gravimetry and positioning are evolving, with major changes projected within the decade. These new technologies are anticipated to improve measurement accuracies such that: dynamic relative gravimeters would be accurate to < 1 milliGal; static relative gravimeters would be accurate to < 1 microGal; and static absolute gravimeters would be accurate to < 10 nanoGal. With instruments that are sensitive to signals several magnitudes smaller than currently possible, the question arises about which dynamic effects of the natural and man-made environments will affect these more sensitive instruments.	H y d r o I o g	Groundwater - Max value: 100-200 μGal - Rate: ~0.02 μGal/min - Frequency: 1-8 cycles per day - Highly variable both between ground- water systems and within a given system. Example: One system varied from -60 to 130 μGal, while another ex- perienced ± 12-13 μGal cycles.	Rain Events- Max value: Tens of μGal- Rate: ~0.02 μGal/min- Frequency: 1-8 cycles per day- Error: Requires close collocationgauges with gravity stations anding. Runoff causing widespreadflooding is an effect not accountwith rain gauges.
This study focuses on sources of gravity change that would be important to consider with a 1 nGal precision static in- strument. Such precision would be available from a cold atom gravimeter, technology that is currently under develop- ment by others. 2. Summary of Findings Largest Measured Gravity Source (Thousands of µGal /year): - Instrument Drift Smallest Measured Gravity Sources (Sub w Gal alphabetical): - Landslides / Avalanches (natural variation, diffi- culty measuring),	y E r o s i o n	 Refs: [1, 22, 26] Debris or Mud Flows Max value: Several Hundred µGal Rivers of rock, earth, or debris saturated with water Local effect, within minutes/hours Four instances in Taiwan, after a typhoon, yielded gravity changes between 27 ± 2 and 285 ± 3 µGal, depending on flow thickness and station prox- 	 Refs: [1, 2, 9] Landslides / Avalanches Max value: Several Tens of μC Masses of rock, earth, snow, or moving downslope Local effect Occurs within minutes Two landslides in Taiwan, after of phoon, yielded -41 ± 11 μGal and 19 μGal gravity changes at two series
 Ambient Temperature Earth "Noise": Hum Earth "Noise": Microseisms Instrument Noise: Setup Error Sea Level Rise Subduction Zone Lithospheric Processes Variation in Length of Day Two known gravity sources have uncertain magnitudes, including: Coastal Erosion (not well-determined) Smallest Error Gravity Source (Sub- nGal): Earth Tides. These are so well-known that their timeseries are often used to calibrate supercon- ducting gravimeters. Variation in Length of Day Two known gravity sources have uncertain magnitudes, including: Coastal Erosion, which should be large based on the amount of mass moved but is not well-studied gravimetrically. Inner and Outer Core Free Wobbles, which are of agreed-upon small magnitude but are most well-studied for their frequencies.	V o l c a n i c	 Large Eruptions Max value: 400 μGal Many events are of this size and can occur within a few hours Gravity may be recovered. One eruption example is that Mt. Etna recovered 100 μGal / hour to near-starting values. Error: Need gravimeters with 10 μGal to 100 nGal accuracies to measure eruption precursor activity. Refs: [2] 	Inflation/Deflation - Max value: A Few Hundred μ - One rate: 0.57 μGal / hour - Can be regional, as with the Yel stone volcanic area, or local - Error: Need gravimeters with lo stable drift rates at the μGal or be level to measure this slow effect. [2]
Errors are not well-understood for the following gravity sources:Near-Station ConstructionEl Niño Southern OscillationEarth "Noise": HumContinental Water StoragePresent Day Ice MeltingEarth "Noise": MicroseismsNear Sensor Mass MovementSoil Moisture / SnowSubduction Zone lithospheric processesPolar MotionWater VaporVariation in Length of DayRain EventsAmbient TemperatureFree WobblesStorm Surge, Wind Forcing, and Thermohaline CirculationAmbient TemperatureImage: Storm Surge of gravity is well-constrained to the sub-nGal level (Earth Tides) and most sources haveOnly one known source of gravity is well-constrained to the sub-nGal level (Earth Tides) and most sources havePresent Signals need to be reduced for use by a more precise instrument. The	C r y o s p h e r e	 Present Day Ice Melting Max value: A few μGal Up to ± 3 μGal / yr, mountain glaciers. 80% of PDIM gravity created < 10 km from station. Remaining from < 50 km. Estimated with GPS+absolute gravity, or by modeling ice loss of nearby glaciers. Difficult to separate from GIA when both affect station, though possible. Refs: [13, 32, 33] 	Glacial Isostatic Adjustme - Max value: A few μGal - GIA Nominally: -6.5 mm = 1 μGa - GRACE measures -1.33 μGal / ye of Fennoscandian and N. Americ - Largest 10 mm / year uplift in H Bay from GPS. Absolute gravity to west agrees at 1.53 ± 0.38 μGal / - Best models agree with ground 1-2 mm / yr. Refs: [34-37]
 And continued collaborative work in monitoring the atmosphere, oceans, cryosphere, and earth surface change. References 1. Hinderer, J., D. Crossley, and R.J. Warburton, Gravimetric Methods- Superconducting Gravity Meters, in Geodesy, T. Herring, Editor. 2009, Elsevier, p. 65-122. 2. Crossley, D., J. Hinderer, and U. Riccardi, The measurement of surface gravity. REPORTS ON PROGRESS IN PHYSICS, 2013, 76: p. 47 pp. 3. Merriam, J.B., Atmospheric pressure and gravity. Geophysical Journal International, 1992, 109: p. 488-500. 4. Strasbourg, U.o. Surface Gravity Variations (atmosphere, ocean, hydrology). 2014; Available from: http://loading.u-strasbg.fr/GGP/. Lambert, A., et al., Improved ocean tide loading corrections for gravity and displacement: Canada and northern United States. Journal of Geophysical Research: Solid Earth (1978–2012), 1998. 103(B12): p. 30231- 30244. Muthod M. K. K. S. et al., Mercio-gravity (hange caused by water storage orgent, Metrologia, 2008, 45(3): p. 	NOL oco nea - ad Tni i n d g a I	Storm Surge, Wind Forcing, and Thermohaline Circulation - Max value: Ones to tens of μGal - E.g.: 2 m storm surge in southern North Sea = 6-8 μGal signals in coastal Europe and UK. 1 μGal., 600 km inland - E.g.: In Finland, wind and current forc- ing cause 2-3 m of loading (as fast as 1 m / 12 hr. 1000 km inland, SG measures 3 1 μGal / m of loading. Refs: [2, 27, 29]	El Niño Southern Oscillat - Max value: 2-3 µGal at coasta torial stations - Multi-year period Refs: [2]
 Anchards, June 201, Inc. 201, and the ben attraction concertainty after DX absolute gravity field with inter DX absolute gravity field with the DX absolute gravit	O t h e r	Oil and Gas Extraction / Mining - Max value: > 70 µGal - Varies by extraction technique, depth, mass removed, and location in area. - One example: Secondary recovery of oil through water injection in Prudhoe Bay, AK changed gravity by 70 µGal in 4 years over a several hundred km ² area. Similar rates reported in Norway of -3.75 to +15 µGal / year Refs: [2, 19]	Construction - Max value: No upper Limit - Depends on the mass moved a tance from the instrument - One example: 3 μGal total effect new parking lot and new nearby ing. Effect modeled by modifying DEM. Refs: [13]

Source: Earth Mass Movement

ng n, 500 n tation, are 400 nperature	Global Pressure Loading - Max value: 1 μGal - >1000 km from station - Complex correction, needs model. - Error: Best modeling yields errors of several-hundred nGal near coasts and ~100 nGal inland. Extreme weather adds several-hundred extra nGal of error to this correction. Refs: [1, 2, 3]	Ambient Temperature - Max value: Nearly 1 μGal - Often ignored - Linear: 13 nGal / °C - Error: Not well understood Refs: [1, 3]	Water Vapor - Max value: Varies from 100 nGal (theoretically) to up to 1 μGal (measurements) - Often Ignored - Local Effect - Increases during rain events - Error: Not well understood Refs: [1, 2, 3]
on of rain nd model- d surface nted for	Continental Water Storage - Max value: 3-10 μGal - Regional signal, well-resolved by satel- lite gravity time series (GRACE) - Strong seasonal periods - Example: Gravity varies by ± 3 μGal in the Mississippi River Basin as measured by GRACE Refs: [2, 25]	 Bodies of Surface Water Max value: 1 to Tens of μGal Within a few 100 km of station for small bodies (rivers, small lakes) Changes due to water mass and bed- load of sediments/rocks during storms. Error: Needs to be modeled, especially for rivers with a winding path. Very diffi- cult to separate the water mass and bed-load effects. Refs: [9] 	Soil Moisture / Snow - Max value: Several μGal - Rate: ~0.02 μGal/min - Frequency: 1-8 cycles per day for soil moisture, Seasonal for snow - Calculated globally (E.g. GLDAS/Noah Land Surface Model) or Regionally (E.g. North America NLDAS and The Euro- pean Center for Medium-range Weather Forecasts (ECMWF)) Refs: [1, 25-27]
r a ty- nd -32 ± stations [9, 14]	Coastal Erosion - Max value: Gravity value uncertain - Coastal erosion rates go as high as 80 m / yr in places in the U.S. - Average erosion rates are 1-2 m / yr with extreme variability spatially and temporally. Refs: [16, 17]		
JGal ellow- ow, better t. Refs:	Key: AG = Absolute Gravimeter SG= Superconducting Gravimeter		
Gal. year max ican GIA. Hudson to the / yr. d data to			
tion tal equa-	Sea Level Rise - Max value: a few hundred nGal - SLR rate from 1993-2010: 3.2 mm/yr; Rate range projected for 2100: 5.1 to 8.6 mm/yr - These roughly translate to gravity changes at coasts : from 1993-2010 of 133 nGal/yr, and 212 to 358 nGal/yr by 2100 Refs: [19]		
and dis- ect of a by build- ng a local	 Nearby Small Mass Movement - Max value: Depends on mass and proximity to instrument - E.g. People or other machinery - A 50 kg (110 lb.) person 0.5 m away is a 2 μGal signal. Refs: [31] 	 Miscellaneous Processes - 70 nGal for subduction zone processes Refs: [18] - Vegetation biomass (modeled in Land Use Models like GLDAS) changes by ± 5 kg/m² yearly and gravity effect is detectable in GRACE harmonic models' degrees 4-14. Ref: [23] 	

*Note: Maximum values listed are yearly or per event unless otherwise stated

s from 100 nGal up to 1 µGal

Snow

Source: Pla	anetary
-------------	---------

	Earth Tides	Ocean Tidal Loading- Global
in events erstood Snow	 Max value: 300 μGal Periodic, Rate Max: 1 μGal / min Magnitude and rate vary with latitude and phase of lunisolar cycle Error: Varies with model type and number of tides used. Largest 3 tides: 	 Max value: < 33 μGal Global effect often less, e.g. 5-10 μGal in Canada Periodic signal. Usually use 9 waves: 4 diurnal, 4 semidiurnal, and 1 monthly Can use TOPEX/POSEIDON data
al µGal nin les per day for soil	Diurnal, Semidiurnal, Annual. Two esti- mates of best accuracy: 0.1 nGal (2009) and 0.39 nGal (2013). Refs: [1, 2]	- Error: One estimate is 5 μGal. Another study says biggest errors are in regional tidal loading. Refs: [1, 2, 5]
or snow (E.g. GLDAS/Noah	Ocean Tidal Loading- Regional	Earth's Motions
) or Regionally (E.g. AS and The Euro- dium-range Weather Refs: [1, 25-27]	 Max value: 50-100% of global (16.5 - 33 μGal) Periodic; complex near the coastline and with coastal bathymetry Regional modeling is necessary Error: One estimate says with careful modeling, 0.05-0.1 μGal. Another says a regional model coupled to a global, 0.1 μGal (as of 1998). Refs: [1, 3, 5] 	 Polar motion max value: 15 μGal Polar motion: Annual (365 days) and Chandler (435 days) periods Length of day max value: < 500 nGal LOD corrections frequently neglected Nearly diurnal free wobble max value: Uncertain. Period: ~430 days; -(1 + 1/434.1 ± 0.9) cycles per sidereal day. Refs: [2, 24]
	Large Earthquakes: Coseismic	Large Earthquakes: Postseismic
	 Max value: ± 20 μGal (GRACE estimates within a 200 km² area of Sumatra 2004 earthquake.) SGs can't detect offsets from earthquakes of < 0.1 μGal. Gravimeters < 700 km from a medium to large earthquake may see offset. Gravimeter frequencies measured: 10 minutes to 24 hours. Refs: [2, 28] 	 Relaxation max value: +12 to -4 μGal Permanent change: -13 to 12 μGal (Estimates from GRACE, Sumatra 2004 earthquake) After earthquakes, deformation relaxation recovers some gravity. E.g. Sumatra tra rate: 1.5 μGal / month. Always after 26 months, gravity change is permanent. Refs: [1, 3]
	Earth "Noise": Microseisms	Earth "Noise": Hum
	 Max value: < 1 μGal Complex; seasonal and latitudinal Most are Rayleigh waves 0.04 - 1 Hz. Primary microseisms (0.05-0.08 Hz) created by breaking waves near shore. Secondary (larger magnitude than primary, 0.1-0.16 Hz) created by downward pressure waves. Deep ocean creates P-waves and core phases 0.1-1.4 Hz. Refs: [11] 	 Max value: < 1 μGal. Just above the detectable limit for stacked SG signals from quiet sites. Periodic, seasonal influences 5- 20 mHz. E.g. Waves traveling south along Pacific coast of N. America excite a hum in the 2.5 -8 mHz range.

Source: Instrumentation

Instrument Noise	Instrument Self-Attraction
- Tares max value: Varies by instru-	- Max value: -1.7 to 0.5 μGal (AGs)
ment. 5 µGal common for AG/SG	- Attraction between instrument pieces
- Tares caused by instrument malfunc-	and test mass in instrument for precise
tion, mechanical shock, electrical distur-	gravimeters.
bance, etc.	– Error: 0.1 – 0.2 μGal.
- Drift: Tens to hundreds of µGal/day.	- Largest errors in calculation are setup
Varies by instrument.	error and simplifications to the instru-
- Setup error: < 1 μGal (tilt, etc.)	ment modeling.
Refs: [1, 20, 29]	Refs: [6, 7, 8]

References (continued)

30. Schmidt, M., A mobile high-precision gravimeter based on atom interferometry, in Physics. 2011, Humboldt-Universität zu Berlin. p.

31. Jacob, T., et al., Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. Journal of Geophysical Research: Solid Earth, 2010. 115(B6): p. B06402. Research: Solid Earth, 2010. 115(B6): p. B06402.
32. Sun, W., et al., Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment. Journal of Geophysical Research: Solid Earth, 2010. 115(B12): p. B12406.
33. Mémin, A., et al., Secular gravity variation at Svalbard (Norway) from ground observations and GRACE satellite data. Geophysical Journal International, 2011. 184(3): p. 1119-1130.
34. Sella, G.F., et al., Observation of glacial isostatic adjustment in "stable" North America with GPS. Geophysical Research Letters, 2007.
34: p. 6pp.
35. Ivins, E.R. and D. Wolf, Glacial isostatic adjustment: New developments from advanced observing systems and modeling. Journal of Geodynamics, 2008. 46: p. 69-77.
36. Braun, A., et al., Glacial isostatic adjustment at the Laurentide ice sheet margin: Models and observations in the Great Lakes region. Journal of Geodynamics, 2008. 46: p. 165-173.
37. Larson, K.M. and T. van Dam, Measuring Postglacial Rebound with GPS and Absolute Gravity. Geophysical Research Letters, 2000. 27(23): p. 3925-3928.