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Normal gravity is gravity due to an ellipsoidal representation of the Earth, at or above the surface of the 
ellipsoid. A common ellipsoid is WGS-84. Gravity is negative here, by the convention that positive is 
directed upward.

A scalar gravity disturbance (δg) is the difference between scalar measured full-field gravity (g) and  
scalar normal gravity (γ) at the exact measurement point (P) :

δgP = gP - γP  (1)   

gP is provided online as the official GRAV-D airborne gravity product.

Normal gravity has often been calculated on the surface of the ellipsoid (γ0) and then a height (or 
“free-air”) correction applied. The correction can be represented as a series (Heiskanen and Moritz, 
1967). Thus, the first-order free-air correction approximates the vertical gradient in normal gravity 
over the distance (h) between the measurement and surface of the ellipsoid, such that:

δgFA ≈ γ' hP  (2),   where γ' = δγ/δh and hP is ellipsoidal height of point (P)

Plugging into Equation (1):
δgP ≈ gP - γ0 + δgFA (3)

The second order and third order forms of the free-air correction (in brackets) are such that:

δgP ≈ gP - γ0 + [ (γ' hP) + (1/2 γ'' hP
2) ]  (4)

δgP ≈ gP - γ0 + [ (γ' hP) + (1/2 γ'' hP
2) + (1/3 γ''' hP

3) ]  (5)

The accuracy of the gravity disturbance is dependent on our ability to either accurately:
1. calculate normal gravity at the measurement point; or
2. calculate normal gravity at the surface and calculate the derivates of noraml gravity with respect to 
height
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1. Background

2.  Normal Gravity and the Free-Air Correction
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4. Results3. Available Methods
The GRAV-D (Gravity for the Redefinition of the American Vertical Datum) 
Project of the U.S. National Geodetic Survey plans to collect airborne gravity data 
across the entire U.S. and its holdings over the next decade. The goal of the project 
is to create a gravimetric geoid model to use as the national vertical datum by 
2022. The project plan and more details are available: 
http://www.ngs.noaa.gov/GRAV-D

GRAV-D (as of August 2013) has publicly released full-field gravity products from 
these high-altitude flights for >15% of the country. The full-field gravity (FFG) at 
altitude product is versatile because it allows the user to calculate any disturbance 
or anomaly that is appropriate for their application- based on any datum and height 
above the datum desired. 

A. Linear Free-Air Correction

B. Heiskanen and Moritz (H&M) 1967 
 Explicit 2nd order Free-Air Correction

C. NGS-Improved H&M Free-Air Correction
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The least precise correction, but one derived from experimental data, is 
a linear (first-order) approximation of the vertical gravity gradient near 
the surface of the Earth:
γ' = 0.3086 mGal/meter

δgFA ≈ 0.3086 hP  (6)

IMPORTANCE OF THIS STUDY:
Accurate combination (or comparisons) of airborne gravity data with marine or terrestrial data require 
accounting for normal gravity at the measurement points and differences in the data spectral content.

This poster compares available methods of calculating gravity disturbances and assesses them for their 
errors across all latitudes and from zero to 11 km altitude. In the conclusions, we recommend the most 
accurate method for calculating disturbances.

Also, before comparing two sets of gravity disturbances collected at different heights, an additional 
step must be taken to filter or continue the data sets until they have matching signal content.

Given: 
The value of γ0, normal gravity at the surface of the ellipsoid, is given 
to a precision of 1 microGal by the Somigliana-Pizetti formula. In the 
literature, it is written in two ways, which are equivalent: Heiskanen and 
Moritz (1967) Eqn 2-78; Hackney and Featherstone (2003) Eqn 5.

An ellipsoid must be chosen as the reference.  WGS-84 is used here.

They give a 2nd-order free-air correction, for “small” heights above the 
ellipsoid (H&M Equation 2-124):

δgFA ≈ -2γa/a  [ 1 + f +m + (-3f + 5/2 m) sin2Φ ] h + 3γah2/a2  (7)
where
γa is normal gravity at the equator at the surface of the ellipsoid,
a, f, and m are properties of the ellipsoid
Φ is latitude
h is ellipsoidal height of the measurement

Cons: This equation approximates γ0 and its derivatives in terms of γa 
and parameters of the ellipsoid. Also, the second derivative of normal 
gravity is derived for a spheroid, not an ellipsoid.

Subtracting  γ0 from H&M Eqn 2-132 for γP, we can solve for second 
order and third order free-air corrections without approximating γ0:

δgFA ≈ -2γ0/a  [ 1 + f +m - 2f sin2Φ ] h + 3γ0h2/a2  (8)
 
δgFA ≈ -2γ0/a  [ 1 + f +m - 2f sin2Φ ] h + 3γ0h2/a2 + 4γ0h3/a3  (9)

These equations still approximate the normal gravity derivatives, but 
can be solved using the precise Somigliana-Pizetti γ0 value. The second 
and third derivatives of normal gravity are derived for a spheroid, not an 
ellipsoid. Adding a 4th term changes the correction by < 0.06 microGals 
(for maximim altitude of 11km).

Important Note: My Equation 8 is the same as presented in Featherstone 
and Dentith (1997) and Featherstone (1995). However, Hackney and 
Featherstone’s (2003) Equation 6, which should be the same, has a typo 
where γa should be γ0. 

The result of this typo is that there 
is an error in the free-air correction 
that grows with increasing latitude 
when using the 2003 version as 
printed (see right).

D. Confocal Ellipsoid for γP 
For any point (P) in space, an ellipsoid can be drawn through that point 
that has the same foci as the reference ellipsoid. This “confocal” ellipsoid 
has an associated Somigliana-Pizetti equation that will precisely calculate 
normal gravity on confocal ellipsoid’s surface.

Inside the National Geospatial Intelligence Agency’s (NGA’s) Fortran 
routines of the hsynth_WGS84.f program (NGA, 2010; Pavlis, et al., 
2012), is a subroutine called “radgrav” that calculates: 1. a confocal 
ellipsoid that passes through any point (P) and 2. γP, normal gravity at P.

P Confocal
Ellipsoid

Reference
Ellipsoid

Foci
h

An advantage of this method is that the gravity disturbance can be 
calculated without applying a free-air correction, using equation (1).
But, for comparisons, the free-air correction from this method would be:
δgFA = γ0 - γP   (10)

E. Harmonic Synthesis of Reference Ellipsoid’s Zonal Coe�cients
Spherical harmonics divide a sphere into a series of compartments, as in 
the figure below (Heiskanen and Moritz, 1967). The ellipsoid, being a 
simple surface that only varies with respect to latitude, can be represented 
well with the first 10 even zonal harmonics (2, 4, 6, ..., 20). To be zonal, 
these harmonics all have orders equal to zero. 

In NGA’s hsynth_WGS84.f program, a subroutine called “grs” can 
calculate the harmonic coefficients for an ellipsoid. Once the coefficients 
are obtained (shown in table above), the hsynth_WGS84.f program can be 
run with those coefficients as the input to obtain a very accurate value of 
normal gravity at any point on or above the ellipsoid, γP.

This method also offers the advantages of Method D, using no free-air 
correction to calculate the disturbance. Again, for comparions only, the 
free-air correction for this method would be Equation 10, as well.

I would like to thank Simon Holmes and Ajit Singh for their assistance with this work.

degree (n) order (m) normalized Cnm normalized Nnm

2 0 -0.48416678176D-03 0
4 0 0.79030375916D-06 0
6 0 -0.16872497152D-08 0
8 0 0.34605251221D-11 0

10 0 -0.26500241424D-14 0
12 0 -0.41079006120D-16 0
14 0 0.44717732450D-18 0
16 0 -0.34636255309D-20 0
18 0 0.24114560041D-22 0
20 0 -0.16024329348D-24 0

WGS-84 Spherical Harmonic Coefficients

Comparison of Two Most Accurate Methods (D & E) 
Since Methods D & E both provide a disturbance without needing a free-air correction, these are 
the two most accurate methods available. For comparison, a test data set with the locations of 
2789 of NGS’ most reliable GPS Benchmarks in the continental United States was used to 
calculate normal gravity γP with both Methods D and E, and the results compared.

F. H&M 1967 Equation for γP 
They give a explicit 2nd order equation for  γP (H&M Equation 2-123):

γP ≈ γ0 [ 1 - 2/a ( 1+ f +m + -2f sin2Φ ) h + 3 h2/a2  (11)

This equation is most accurate when solved with the γ0 from the 
Somigliana-Pizetti formula. It has the same advantages of Methods 
D&E, however contains approximations that make it less accurate. 

The results of the comparison showed that Methods D 
and E returned identical results in mGal (to three 
decimal places) for all but 10 of the GPS Benchmarks. 
The remaining 10 have a +1 or -1 microGal difference 
due to rounding error. Thus, the two methods both 
yeild results precise to 1 microGal.

Comparison of Methods A through C with Method D 

- The 2nd order NGS formula (also, Featherstone & Dentith, 1997) is more accurate at nearly all 
latitudes and altitudes compared to the Heiskanen and Moritz 2nd order formula. The exception is 
that the two 2nd order corrections are nearly equivalent at very low latitudes (< +/- 10 degrees).
- The addition of the 3rd term to the NGS formula further benefits higher latitudes (> +/- 50 deg.).
- Recommended correction: Confocal or Zonal Coefficient Methods 
            If not available, then use the NGS 3rd order formula (error <0.05 mGal)
*Disturbances at different heights must still be continued to equal height before comparison.*

5. Conclusions


