1. Background

 2022. The project plan and more details are avialable: htip//www.ngs.noaa.gov/GRAV-D

 or nomaly that is appropri
above the datum desired.
uportance of this study:
Accurate combination (or comparisons) of a aibome gravity data with marine or ererestrial data require sccounting for normal gravity at the measurement points and differences in the dat spectral content. This poster compares avialable methods of ealculating gravity disturbances and assesses them for their
errors aceross all latiudes and from zero to 111 km altitude. In the condlusions, we ereommend the most reros across all latituces and from zero ot on

2. Normal Gravity and the Free-Air Correction

 ellipsoid. A comn.
directed upward.
scalar gravity disturbance $(\delta \mathrm{g})$ is the difference between scalar measured full-field gravity (g) and Scalar normal gravity (y) at the exe xact measurumement point (P))
$\mathrm{g}_{\mathrm{P}}=\mathrm{g}_{\mathrm{P}}-\gamma_{\mathrm{P}} \quad$ (1)
${ }_{\mathrm{g}}^{\mathrm{p}}$ is provided online as the official GRAV-D airborne gravity product.
Normal gravity has offen been calculated on the surface of the ellipsoid ($\left(\gamma_{0}\right)$ and then a height (or
"free-air") correction applied The correction can be represented as a series (Heiskanen and Moritz, ree-air) correction applied. The correction can berepresented as aseries (Heiskanen and Moritz, 967). Thus, the first-order free-air correction approximates the vertical gradient in
over the distance (h) between the measurement and surface of the ellipsoid, such that:
$\delta_{\mathrm{g}_{\mathrm{FA}}} \approx \gamma^{\prime} \mathrm{h}_{\mathrm{P}} \quad(2)$, where $\gamma^{\prime}=\delta \gamma / \delta$ hand h_{P} is ellipsoidal height of point (P)
Plugging into Equation (1):
$\delta \mathrm{g}_{\mathrm{p}} \approx \mathrm{g}_{\mathrm{p}}-\gamma_{0}+\delta \mathrm{g}_{\mathrm{FA}}$
The second order and third order forms of the free-air correction (in brackets) are such that:
$\mathrm{g}_{\mathrm{p}} \approx \mathrm{g}_{\mathrm{p}}-\gamma_{0}+\left[\left(\gamma^{\prime} \mathrm{h}_{\mathrm{p}}\right)+\left(1 / 2 \gamma^{\prime \prime} \mathrm{h}_{\mathrm{P}}{ }^{2}\right)\right] \quad$ (4)
$g_{p} \approx g_{p}-\gamma_{0}+\left[\left(\gamma^{\prime} h_{p}\right)+\left(1 / 2 \gamma^{\prime \prime} h_{p}{ }^{2}\right)+\left(1 / 3 \gamma^{\prime \prime \prime} h_{p}{ }^{3}\right)\right] \quad$ (5)
he accuracy of the gravity disturbance is dependent on our ability to either accurately: . calculatat ormal gravity a the measurement point; or
calculate normal gravity at the surface and calculate the derivates of noraml gravity with respect to

$0 \pm$

Given: The value of γ_{0}, normal gravity at the surface of the ellipsoid, is given to a precisison of 1 microGal by the Somigliana-Pizett formula. In the litertithen literature, it is written in two ways, which are equivalent: Heiskane Moritz (1967) Eqn $2-78$; Hackney and Featherstone (2003) Eqn 5 .
 An ellipsoid must be chosen as the reference. WGS-84 is used here. Linear Free-Air Correction
 The least precise correction, but one derived from experimental data, is a linear (first-order) approximation of the vertical gravity gradient near the surface of the Earth: $\gamma^{\prime}=0.3086 \mathrm{mGal} / \mathrm{meter}$
 $\delta g_{\mathrm{FA}} \approx 0.3086 \mathrm{~h}_{\mathrm{P}} \quad$ (6)

. Heiskanen and Moritz (H\&M) 1967
Explicit 2nd order Free-Air Correction
They give a 2nd-order free-air correction, for "small" heights above the
ellipsoid (H\&M Equation 2-124): -
$\delta_{g_{\text {FA }}} \approx$
$\mathrm{g}_{\mathrm{FA}} \approx-2 \gamma_{\mathrm{a}} / \mathrm{a}\left[1+\mathrm{f}+\mathrm{m}+(-3 \mathrm{f}+5 / 2 \mathrm{~m}) \sin ^{2} \Phi\right] \mathrm{h}+3 \gamma_{\mathrm{a}} \mathrm{h}^{2 / a^{2}}$
${ }_{a}$ is normal gravity at the equator at the surface of the ellipsoid,
a, f, and m are
Φ is latitude
is ellipsoid
Cons: This equation approximates γ_{0} and its derivatives in terms of γ_{a}
and parameters of the ellipsoidid Also, the second derivative of normal and parameters of the ellipsoid. Also, the second d
gravity is derived for a spheroid, not an ellipsoid.
NGS-Improved H\&M Free-Air Correction
Nubtracting γ from H\&M Egn 2 -132 for γ 位 Subtracting γ_{0} from H\&M Eqn $2-132$ for γ_{p}, we can solve for second
order and third order free-air corrections without approximating γ_{0} :
$\delta \mathrm{g}_{\mathrm{FA}} \approx-2 \gamma_{0} \delta^{1}\left[1+\mathrm{f}+\mathrm{m}-2 \mathrm{f} \sin ^{2} \Phi\right] \mathrm{h}+3 \gamma_{0} \mathrm{~h}^{2} / \mathrm{a}^{2} \quad$ (8)
$\delta \mathrm{g}_{\mathrm{FA}} \approx-2 \gamma_{0} / \mathrm{a}\left[1+\mathrm{f}+\mathrm{m}-2 \mathrm{f} \sin ^{2} \Phi\right] \mathrm{h}+3 \gamma_{0} \mathrm{~h}^{2 / a^{2}}+4 \gamma_{0^{h^{3}} / \mathrm{a}^{3}} \quad$ (9)
These equations still approximate the normal gravity derivatives, but can be solved using the precise Somigliana-Pizetiti γ_{0} value. The second and third derivatives of normal gravity are derived for a spheroid, not an
ellipsoid. Adding a 4 th term changes the correction by <0.06 microGals. (for maximim altitude of 11 km)

Important Note: My Equation 8 is the same as presented in Featherstone and Dentith (1997) and Featherstone (1995). However, Hackney and ${ }_{\text {Fhere }}{ }_{\text {enthers }} \gamma_{a}$ should be γ_{0}. The result of this typo is that there s an error in the free-air correction when using the 2003 version as
wher (see ight) when using the 2003
printed (see right).

D. Confocal Ellipsoid for γ_{P}

For any point (P) in space, an ellipsoid can be drawn through that point has an associated Somig thiana-Pizetti equation that will precisely calcullate has an associated Somigliana-Pizetti equation the
normal gravity on confocal ellipsoid s surface.
Inside the National Geospatial Intelligence Agency's (NGA's) Fortran routines of the hsynth_WGS84.f program (NGA, 2010 ; Pavlis, et al.,
2012), is a subroutine called "radgrav" that calculates: 1 a confocal ellipsoid that passes through any point (\mathbb{P}) and $2 . \gamma_{\mathrm{P}}$, normal gravity at

An advantage of this method is that the gravity disturbance can be calculated without applying a free-air correction, sing equation (1).
But, for comparisons, the free-air correction from this method would be $\delta \mathrm{g}_{\mathrm{FA}}=\gamma_{0}-\gamma_{\mathrm{P}} \quad$ (10)
E. Harmonic Synthesis of Reference Ellipsoid's Zonal Coefficients Spherical harmonics divide a sphere into a series of compartments, as in
the figure below (Heiskanen and Morit, 1967). The ellipsoid, being a simple surface that only varies with respect to latitude, can be represented well with the first 10 even zonal harmonics $(2,4,6, \ldots, 20)$. To be zonal, these harmonics all have orders equal to zero

In NGA's hsynth_ WGG884.f program, a subroutine called "grs" can are obtained (shown in table above), the hsynth WGS84.f program can b run with those coefficients as the input to obtain a very accurate value of hormal gravity at any point on or above the ellipsoid, γ_{p}.
This method also offers the advantages of Method D , using no free-air orrection to calculate the disturbance. Again, for comparions only, the dir correction for this method would be Equation 10 , as well. H\&M 1967 Equation for γ_{P}
They give a explicit 2 nd order equation for γ_{p} (H\&M Equation 2-123)
$\gamma_{\mathrm{p}} \approx \gamma_{0}\left[1-2 / a\left(1+f+m+-2 f \sin ^{2} \Phi\right) h+3 h^{2} / a^{2}\right.$
This equation is most accurate when solved with the γ_{0} from the
4. Results

Comparison of Two Most Accurate Methods (D \& E)
Since Methods D \& E both provide a disturbance without needing a free-air correction, these are
the two most accurate methods available. For comparison, a test data set with the locations of the two most accurate 2789 of NGS' most relible GPS Benchmarks in the continental Unit with the locations 2789 of NGS mostr reliable GPS Benchmarks in the continental United States was
calculate normal gravity γ_{P} with both Methods D and E, and the results compared.
 and E returned identical results in mGal (to three and E returned identical results in mGal (to terree
decimal places) for all but 10 of the GPS Benchmarks decimal placess for
The remaining 10 have a +1 or -1 microGal difference
due to rounding erros Thus, the two methods both due to rounding error. Thus, the two
yeild results precise to 1 microGal.

Comparison of Methods A through C with Method D

5. Conclusions
-The 2nd order NGS formula (also, Featherstone \& Dentith, 1997) is more accurate at nearly all hatitudes and antudes compared to the Heiskanen and Mo ty 2n low datitudes ($<+/-10$ depgrees). - The addition of the cord tertm to the NGS formula a further benefits higher latitudes $(\rangle+\rho-50$ deg.). The addition of the 3rd term to the NGS formula further benefits higher
Recommended correction: Confocal or Zonal Coefficient Methods *Disturbances at different heights must still be continued to equal height before comparison.*
6. References and Acknowledgements

