Time-Variable Gravity Signals and Their Uncertainties: An Assessment of the Current State of Knowledge

Theresa M. Damiani NOAA-National Geodetic Survey, 1315 East-West Hwy, SSMC3, Silver Spring, MD 20910; theresa.damiani@noaa.gov

1. Background

Technology for gravimetry and positioning are evolving, with major changes projected within the decade. These new technologies are anticipated to improve measurement accuracies such that: dynamic relative gravimeters would be accurate to < 1 milliGal; static relative gravimeters would be accurate to < 1 microGal; and static absolute gravimeters would be accurate to < 10 nanoGal. With instruments that are sensitive to signals several magnitudes smaller than currently possible, the question arises about which time-variable gravity effects (natural and man-made) will affect these more sensitive instruments. This study focuses on sources of gravity change that would be important to consider with a 1 nGal precision static instrument. Such precision would be available from a cold atom gravimeter, technology that is currently under development by several international research teams.

3. Conclusions

The gravity community has much work to do to fully-exploit a 1 nGal precision instrument.

Only one known source of gravity is well-constrained to the sub-nGal level (Earth Tides) and most sources have errors > 1 μ Gal. Error budgets on these gravity signals need to be reduced for use by a more precise instrument. The multi-disciplinary nature of the gravity sources will require diverse instrumentation; precise modeling; engineering; and continued collaborative work in monitoring the atmosphere, oceans, cryosphere, and earth surface change.

2. Summary of Findings

Regarding Source Magnitudes:	Regarding Source Uncertainties:			
Largest Magnitude Gravity Source (Thousands of µGal /year): - Instrument Drift	Largest Uncertainty Gravity Sources (10,000s nGal /year, alphabetical): - Instrument Drift (large variation by instrumer - Landslides / Avalanches (natural variation, dif			
Smallest Magnitude Gravity Sources (Sub-µGal, alphabetical): - Ambient Temperature	culty measuring), - Coastal Erosion (not well-determined)			
- Earth "Noise": Hum - Earth "Noise": Microseisms - Instrument Noise: Setup Error - Sea Level Rise - Subduction Zone Lithospheric Processes - Variation in Length of Day	Smallest Uncertainty Gravity Sources(Sub- nGal):- Earth Tides. These are so well-known that theirtimeseries are often used to calibrate supercon-ducting gravimeters (the 3 largest tides).Gravity Sources with Unknown Uncertainty:- Near-Station Construction- Polar MotionContinental Water Storage			
These gravity signals are best studied with a 1 nGal precision instrument				
Gravity Sources of Unknown Magnitude: - Coastal Erosion, which should be large based on the amount of mass moved but is not well-studied gravimetrically. - Inner and Outer Core Free Wobbles, which are of agreed-upon small magnitude but are most well-studied for their frequencies.	 Near Sensor Mass Movement Present Day Ice Melting Ambient Temperature El Niño Southern Oscillation Variation in Length of Day Subduction Zone Lithospheric Processes Storm Surge, Wind Forcing, and Thermohaline Circulation Water Vapor Water Vapor Soil Moisture Hum 			

Decreasing Magnitude

4. Catalog of Time-Variable Gravity (g) Signals

Α	Local Pressure Loading	Regional Pressure Loading	Global Pressure Loading	Ambient Temperature	Water Vapor
t m o s p h e r	 Max value: ~27 μGal Within 50 km of station Rate: ~0.2 μGal/min Nominal: ~ 0.3 to 0.4 μGal / mbar Best accuracy when modeled at station Error: If hourly pressure measurements, accounting for topography, and reasonable weather, < 200 nGal. ~ 400 nGal in extreme weather. Refs: [1, 2, 3, 4, 29] 	 Max value: 1-2 μGal 50 - 1000 km from station Linear. ~ 0.078 μGal / mbar Error: If 1 barometer at station, 500 n Gal. If sparse network around station, <100 nGal. Topography errors are 400 nGal / km. Non-nominal air temperature structure yields up to 30 nGal. Refs: [1, 2, 3, 4] 	 Max value: 1 μGal >1000 km from station Complex correction, needs model. Error: Best modeling yields errors of several-hundred nGal near coasts and ~100 nGal inland. Extreme weather adds several-hundred extra nGal of error to this correction. Refs: [1, 2, 3] 	- Max value: Nearly 1 μGal - Often ignored - Linear: 13 nGal / °C - Error: Not well understood Refs: [1, 3]	 Max value: Varies from 100 nGal (theoretically) to up to 1 μGal (measurements) Often Ignored Local Effect Increases during rain events Error: Not well understood
H y d r o I o g y	Groundwater - Max value: 100-200 μGal - Rate: ~0.02 μGal/min - Frequency: 1-8 cycles per day - Highly variable both between ground- water systems and within a given system. Example: One system varied from -60 to 130 μGal, while another ex- perienced ± 12-13 μGal cycles. Refs: [1, 22, 26]	 Rain Events Max value: Tens of μGal Rate: ~0.02 μGal/min Frequency: 1-8 cycles per day Error: Requires close collocation of rain gauges with gravity stations and model-ing. Runoff causing widespread surface flooding is an effect not accounted for with rain gauges. Refs: [1, 2, 9] 	Continental Water Storage - Max value: 3-10 μGal - Regional signal, well-resolved by satel- lite gravity time series (GRACE) - Strong seasonal periods - Example: Gravity varies by ± 3 μGal in the Mississippi River Basin as measured by GRACE Refs: [2, 25]	 Bodies of Surface Water Max value: 1 to Tens of μGal Within a few 100 km of station for small bodies (rivers, small lakes) Changes due to water mass and bed- load of sediments/rocks during storms. Error: Needs to be modeled, especially for rivers with a winding path. Very diffi- cult to separate the water mass and bed-load effects. Refs: [9] 	Soil Moisture / Snow - Max value: Several μGal - Rate: ~0.02 μGal/min - Frequency: 1-8 cycles per day for soil moisture, Seasonal for snow - Calculated globally (E.g. GLDAS/Noah Land Surface Model) or Regionally (E.g. North America NLDAS and The Euro- pean Center for Medium-range Weather Forecasts (ECMWF)) Refs: [1, 25-27]
E r o s i o n	 Debris or Mud Flows Max value: Several Hundred μGal Rivers of rock, earth, or debris saturated with water Local effect, within minutes/hours Four instances in Taiwan, after a typhoon, yielded gravity changes between 27 ± 2 and 285 ± 3 μGal, depending on flow thickness and station proximity to the flow. Refs: [9, 14] 	 Landslides / Avalanches Max value: Several Tens of μGal Masses of rock, earth, snow, or debris moving downslope Local effect Occurs within minutes Two landslides in Taiwan, after a ty- phoon, yielded -41 ± 11 μGal and -32 ± 19 μGal gravity changes at two stations within a few 100 meters. Refs: [9, 14] 	Coastal Erosion - Max value: Gravity value uncertain - Coastal erosion rates go as high as 80 m / yr in places in the U.S. - Average erosion rates are 1-2 m / yr with extreme variability spatially and temporally. Refs: [16, 17]		
V E	Large Eruptions	Inflation/Deflation	Large Earthquakes: Coseismic	Large Earthquakes: Postseismic	

Movements

oise

Ба

Motion,

	o a r t t a h q i u c a k or e	 Max value: 400 μGal Many events are of this size and occur within a few hours Gravity may be recovered. One tion example is that Mt. Etna rec 100 μGal / hour to near-starting Error: Need gravimeters with 10 100 nGal accuracies to measure tion precursor activity. Refs: [2] 	 Max value: A Few Hundre One rate: 0.57 μGal / hour Can be regional, as with the stone volcanic area, or local Error: Need gravimeters with stable drift rates at the μGal level to measure this slow ef [2] 	e Yellow- th low, or better fect. Refs:	 Max value: ± 20 μGal (GRACE estimates within a 200 km² area of Surta 2004 earthquake.) SGs can't detect offsets from earthquakes of < 0.1 μGal. Gravimeters < 700 km from a media to large earthquake may see offset. Gravimeter frequencies measured: 1 minutes to 24 hours. Refs: [2, 28] 	 Relaxation max value: +12 t Permanent change: -13 to 12 (Estimates from GRACE, Suma 2004 earthquake) After earthquakes, deformation ation recovers some gravity. E.g. tra rate: 1.5 μGal / month. Always after 26 months, gravit change is permanent. Refs: [1, 3) 	o -4 μGa 2 μGal atra on relax- g. Suma- ty 3]	-4 μGal IGal ra relax- Suma-		
	C r y o s p h e r e	Present Day Ice Melting - Max value: A few μGal - Up to ± 3 μGal / yr, mountain g - 80% of PDIM gravity created < from station. Remaining from < - Estimated with GPS+absolute g or by modeling ice loss of nearb ciers. Difficult to separate from C when both affect station, thoug sible. Refs: [13, 32, 33]	Glacial Isostatic Adjusglaciers Max value: A few μGal- GIA Nominally: -6.5 mm = 1- GRACE measures -1.33 μGa50 km.50 km.gravity,- Largest 10 mm / year upliftBay from GPS. Absolute gravGIAwest agrees at 1.53 ± 0.38 μGa- Best models agree with grow1-2 mm / yr. Refs: [34-37]	tment μGal. Ι / year max herican GIA. in Hudson rity to the Gal / yr. bund data to			Key: AG = Absolute Gravimeter SG= Superconducting Gravimeter			
N C T T T T T T T T T T	IOL co ea ad ni i n g	Storm Surge, Wind Forcin Thermohaline Circulation - Max value: Ones to tens of μ - E.g.: 2 m storm surge in southe North Sea = 6-8 μGal signals in c Europe and UK. 1 μGal., 600 km - E.g.: In Finland, wind and curre ing cause 2-3 m of loading (as fa m / 12 hr. 1000 km inland, SG me 3.1 μGal / m of loading. Refs: [2, 2	ng, and nEl Niño Southern Osci - Max value: 2-3 μGal at co torial stations - Multi-year periodGal ern coastal inland ent forc- ast as 1 easures 27, 29]- Max value: 2-3 μGal at co torial stations - Multi-year period	llation bastal equa-	Sea Level Rise - Max value: a few hundred nGal - SLR rate from 1993-2010: 3.2 mm/yr Rate range projected for 2100: 5.1 to mm/yr - These roughly translate to gravity changes at coasts : from 1993-2010 o 133 nGal/yr, and 212 to 358 nGal/yr b 2100 Refs: [19]	3.6 y				
	O t h e r	 Oil and Gas Extraction / Mining Max value: > 70 µGal Varies by extraction technique, depth, mass removed, and location in area. One example: Secondary recovery of oil through water injection in Prudhoe Bay, AK changed gravity by 70 µGal in 4 years over a several hundred km² area. Similar rates reported in Norway of -3.75 to +15 µGal / year Refs: [2, 19] Oil and Gas Extraction / Mining Max value: No upper Limit Depends on the mass moved and distance from the instrument One example: 3 µGal total effect of a new parking lot and new nearby building. Effect modeled by modifying a local DEM. Refs: [13] 		 Nearby Small Mass Movemen Max value: Depends on mass and proximity to instrument E.g. People or other machinery A 50 kg (110 lb.) person 0.5 m away i 2 μGal signal. Refs: [31] 	 Miscellaneous Processes - 70 nGal for subduction zone cesses Refs: [18] - Vegetation biomass (modeled Land Use Models like GLDAS) ch by ± 5 kg/m² yearly and gravity e detectable in GRACE harmonic r degrees 4-14. Ref: [23] 	Wiscellaneous Processes • 70 nGal for subduction zone pro- cesses Refs: [18] • Vegetation biomass (modeled in _and Use Models like GLDAS) changes oy ± 5 kg/m² yearly and gravity effect is detectable in GRACE harmonic models' degrees 4-14. Ref: [23]				
Ea N - P - N an - Ei nu Diu ma an	rth Ti lax val eriodic lagnitu d phas ror: Va mber c urnal, S ites of d 0.39	ides lue: 300 μGal , Rate Max: 1 μGal / min ide and rate vary with latitude e of lunisolar cycle ries with model type and of tides used. Largest 3 tides: emidiurnal, Annual. Two esti- best accuracy: 0.1 nGal (2009) nGal (2013). Refs: [1, 2]	Ocean Tidal Loading- Global - Max value: < 33 μGal - Global effect often less, e.g. 5-10 μGa in Canada - Periodic signal. Usually use 9 waves: diurnal, 4 semidiurnal, and 1 monthly - Can use TOPEX/POSEIDON data - Error: One estimate is 5 μGal. Anothe study says biggest errors are in region tidal loading. Refs: [1, 2, 5] Earth "Noise": Microseisms - Max value: < 1 μGal - Complex; seasonal and latitudinal - Most are Rayleigh waves 0.04 - 1 Hz. Primary microseisms (0.05-0.08 Hz) crite ated by breaking waves near shore. Secondary (larger magnitude than prima 0.1-0.16 Hz) created by downward pre- sure waves. Deep ocean creates P-wave and core phases 0.1-14 Hz. Refs: [11]	 Ocean - Max va 33 μGal - Periodi - Periodi - Region - Error: C modelin regional μGal (as Earth 4 - Max va - Iust ab stacked - Periodi - Just ab stacked - Periodi 	Tidal Loading- Regional alue: 50-100% of global (16.5 -)Ear - Polc; complex near the coastline n coastal bathymetry al modeling is necessary One estimate says with careful g, 0.05-0.1 μGal. Another says a model coupled to a global, 0.1 of 1998). Refs: [1, 3, 5]Ear - Pol Char - Ler - Net valu - Per cycle'Noise'': Hum alue: < 1 μGal. ove the detectable limit for SG signals from quiet sites. ic, seasonal influences hHz. E.g. Waves traveling south acific coast of N. America excite a the 2.5 -8 mHz range.Ear - Pol	th's Motions ar motion max value: 15 μGal ar motion: Annual (365 days) and adler (435 days) periods agth of day max value: < 500 nGal corrections frequently neglected arly diurnal free wobble max e: Uncertain. fod: ~430 days; -(1 + 1/434.1 ± 0.9) es per sidereal day. Refs: [2, 24]	Instrumentation	 Instrument Noise Tares max value: Varies by instrument. 5 μGal common for AG/SG Tares caused by instrument malfunction, mechanical shock, electrical disturbance, etc. Drift: Tens to hundreds of μGal/day. Varies by instrument. Setup error: < 1 μGal (tilt, etc.) Refs: [1, 20, 29] Instrument Self-Attraction Max value: -1.7 to 0.5 μGal (AGs) Attraction between instrument pieces and test mass in instrument for precise gravimeters. Error: 0.1 - 0.2 μGal. Largest errors in calculation are setup error and simplifications to the instrument modeling. Refs: [6, 7, 8] 		