geodesy.noaa.gov

OPUS-Projects and Future Developments

Dan Gillins, Ph.D., P.L.S. Geodesist, National Geodetic Survey September 18, 2020

geodesy.noaa.gov

Who is this guy?

Dan Gillins, Ph.D., P.L.S.

 Geodesist, Observation & Analysis Division, National Geodetic Survey, (2016 – present)

Education

• B.S., M.S., Ph.D., Civil Engineering

Experience

- Assistant Professor, College of Engineering (2013 – 2016)
- Land Surveyor, Survey Technician (2002 - 2012)

geodesy.noaa.gov

Greetings from Home!

Literally every parent trying to work remotely right now

9/22/2020

geodesy.noaa.gov

Outline

- 1. Background on OPUS-Projects
- 2. Overview on ongoing and future developments of OPUS-Projects
- 3. Real-Time Kinematic (RTK) Technique and Real-Time Networks (RTNs)
- 4. GNSS Vector Exchange (GVX) File Format
- 5. Details on development to OPUS-Projects "for RTK"
- 6. Future Plans

geodesy.noaa.gov

GNSS Errors

- Clock biases
- Orbit errors
- Tropospheric delays
- Ionospheric delays
- Dilution of precision

geodesy.noaa.gov

Online Positioning User Service (OPUS)

OPUS-Static – (2001)

- L1/L2 observables
- Single occupation on a mark, ≥ 2 hours
- GPS-only (currently true for all versions of OPUS)

OPUS-Rapid Static – (2007)

- Single occupation on a mark, 15 min < T < 2 hours
 - L1/L2 observables and C1 or P1 and P2

OPUS-Projects – (~2012)

- Multiple occupations on numerous marks
- Survey network least squares adjustments
- Static GPS survey campaigns

geodesy.noaa.gov

How does OPUS-S work?

- Uses software called PAGES for processing baselines
- Uses single-baseline solutions from 3 of 5 "best-fitting" CORS. The 3 CORS are held to their published positions
 - Being closest to the user's site.
 - Having common satellite visibility with the user data.
 - Having low multipath measures
- Coordinates at your station are derived by simply averaging the results of the 3 baselines
- Peak-to-Peak errors are given in the solution

OPUS-Projects

- Free, web-based software
 - Online training available
- Designed for managing campaign-style GPS surveys
 - Multiple repeat occupations of several marks
- Ability to add GPS data from NOAA CORS Network
- Session baseline processing using PAGES
- Customize tropospheric delay models, elevation cutoff masks, constraint weighting
- Network least squares adjustments of multiple sessions
- Choice of reference frames and geoid models
- Currently requires \geq 2-hour static GPS observation for post-processing $_{9/22/2020}$

geodesy.noaa.gov

OPUS-Projects

- "Hub design" recommended by NGS
- Hub to project marks recommended to be ~100 km
- Use multiple CORSs
- Use one very long baseline from hub to CORS (improves tropospheric modeling)
- OPUS-Projects does session baseline processing

geodesy.noaa.gov

Vertical Accuracy, OPUS-Projects

geodesy.noaa.gov

Development Phases of OPUS-Projects

PRODUCTION

- OPUS-Projects v. 3.x
- Session processing using PAGES
- Network adjustments using GPSCOM

- BETA (open to public)
- OPUS-Projects
 v. 4.0
- Run adjustments in ADJUST
- Streamlined for Publishing Survey via NGS in IDB
- Will move to PRODUCTION ~12/2020

(internal)

DEV

- OPUS-Projects
 v. 5.0
- Upload GNSS vectors for adjustment
- Allows inclusion of RTK/RTN vectors
- Will move to BETA ~12/2020

"Twinkle in NGS's eve"

• OPUS-Projects v. 6.0

- Upload differential leveling measurements
- Adjust leveling holding GNSSderived orthometric heights with stochastic constraints
- Currently in planning stages

OPUS-Projects v. 4.0 ("BETA OP") https://beta.ngs.noaa.gov/OPUS-Projects/

- Newest version of OPUS-Projects available to public
- Buttons for users to upload photos and descriptions
- Prepares files for publication (Blue Booking)
- Ability to run ADJUST within OPUS-Projects
- Button to submit survey to NGS for review and publication in NGS Integrated Database
- User manual will be released soon!

geodesy.noaa.gov

Beta OPUS-Projects

9/22/2020

geodesy.noaa.gov

OPUS-Projects v. 5.0 ("OP4RTK")

Previously processed GNSS vectors

 Single-base RTK vectors
 Network RTK vectors
 Vectors processed in other software

Scheduled for – public release in Dec. 2020

Brief on Terminology

- **Baseline**: <u>the</u> line connecting two GNSS marks
- Vector: a mathematical representation of a measurement of the baseline, expressed in delta X,Y,Z components (along with error estimates)

So, <u>one</u> baseline measured repetitively seven times will have <u>seven</u> vectors

geodesy.noaa.gov

Real-Time Kinematic (RTK) Surveying

Single-Base RTK

- Single "base" or reference station
- Transmits precise coordinates and GNSS observables to moving "rover" using wireless communication
- Baselines processed in "real-time" and stored on a data collector
- Produces vectors from base to rover
- < 20 km baseline length

geodesy.noaa.gov

Real-Time Networks (RTNs)

- Network of "permanent" GNSS base stations
 - < 70 km spacing between base stations
 - < 40 km maximum baseline length
- Atmospheric and orbital corrections are transmitted to rover via mobile data link

Pros and Cons of RTNs

Benefits	Concerns
FAST. Could reduce field observations from several hours to just a few minutes	RTN may not be aligned with the National Spatial Reference System
Can evaluate data quality in real time	Ideally, survey should be tied to NOAA CORS Network
Easy to obtain additional observations	More prone to multipathing errors
Only a single receiver (i.e., rover) is needed during a session	Baselines must be kept short (i.e., < 40 km)

geodesy.noaa.gov

Empirical Evaluation of the Accuracy of RTNs

geodesy.noaa.gov

Formal Error Propagation via Survey Network Least Squares Adjustment

Problem Statement

- NGS does not have a simple mechanism for accepting data resulting from Real-time Kinematic (RTK) surveys
- RTK surveys are very popular (more than static surveys)
 - Highly efficient—measurements done in seconds to minutes
- RTK vectors and metadata are generally stored in a proprietary format
- There lacks an industry standard file format for any type of GNSS vector, whether the vector was derived in real-time or by post-processing

geodesy.noaa.gov

Objectives

• Develop a standard file format for GNSS vectors

- Open-source, machine-readable, human-readable
- Must include all of the necessary information for performing a least squares adjustment
- Must include important metadata for quality control
- Develop OPUS-Projects so that GNSS vectors from RTK surveys can be uploaded, checked, adjusted, and submitted to NGS

geodesy.noaa.gov

Example: Conduct RTK Survey and Download Data

Store your RTK measurements as vectors and not just points!

geodesy.noaa.gov

Example: Process Base Data in OPUS-Projects

24

geodesy.noaa.gov

Example: Upload RTK Vectors to OPUS-Projects

9/22/2020

geodesy.noaa.gov

But but but...

Differing GNSS equipment and software vendors output data in varying file formats (often proprietary, closed-source)

Examples of Standard File Formats

• **RINEX** = Receiver Independent Exchange Format

- Version 1 proposed in 1989 by Werner Gurtner (University of Bern)
- Version 2 proposed in 1990 by Gurtner and Gerald Mader (NGS)
- Aimed for the easy exchange and processing of raw GNSS data
- GNSS carrier-phase and pseudorange (code) measurements, and time

• LAS = LASer format

- Proposed by the American Society of Photogrammetry and Remote Sensing (ASPRS) in 2003
- Open format used for exchanging point cloud data

Why Standard File Formats?

Standardization benefits:

- Broadens use; easier to work with by others who will use the data
- Easier to share with others
- Reduces the need to convert from one format to another
- Data in proprietary format can be converted to open, standard format
- Increases likelihood critical metadata is captured and accurate; significant figures are preserved
- Lengthens the preservation of the data
- Can be made machine-readable

Website: https://www.ngs.noaa.gov/data/formats/GVX/index.shtml

- Detailed documentation
- Schema (XSD)
- Example vector file

GVX is written in Extensible Markup Language (XML)

- Designed to store and carry data in plain text format
- Flexible representation of arbitrary data structures
- Extensible new elements can be added later without breaking applications
- Both machine-readable and human-readable
- Schemas can be used to define "must haves" and "should haves" 9/22/2020

geodesy.noaa.gov

Industry Invited to Provide Feedback

GVX Remains Under Development

- Received feedback from numerous individuals, companies, governments, and organizations
 - Revising GVX to address this feedback
- Desire to make it compatible with GeodesyML (international efforts)
- Stay tuned for updates!

1. SOURCE_DATA

• Information on the source of the GVX file, such as the name of the original data file, conversion software to make the GVX file, etc.

2. PROJECT_INFORMATION

• Information on the survey project, points of contact, start and end date of the survey

3. REFERENCE_SYSTEM

• Specifies the reference frame and units for data in the file

4. EQUIPMENT

• Defines all GNSS equipment utilized to create the data in the file, including all antennas and receivers, serial numbers, firmware versions, antenna phase center calibration models

5. SURVEY_SETUP

- Information on how the vectors were collected or derived, such as settings for single-base RTK, RTN settings, post-processing settings, etc.
- Operator name(s)

6. POINT

- Geodetic coordinates for all start and end points of every vector
- Names/codes
- Antenna heights
- Point type (fixed/float/code/keyed-in, etc.)

7. GNSS_VECTOR

- IDs for starting and ending points of the vector
- ID for survey setup
- Start and end time of the observation
- Differential, mark-to-mark vector components (ECEF) or dX, dY, dZ
- Variance and covariance values
- QA/QC metadata
 - DOP, RMS, mask settings, number of satellites used by GNSS type, orbit types and sources, RTCM age

And and and...

Although the original objective was to develop tools for RTK surveys, GVX supports <u>all</u> types of GNSS vectors

•Real-time vectors

•Post-processed vectors

geodesy.noaa.gov

GVX Flow Chart

geodesy.noaa.gov

Design for OPUS-Projects and GVX

geodesy.noaa.gov

Step 1: Upload Static GNSS Data Collected at Base Stations; Post-process with CORSs

geodesy.noaa.gov

Step 2: Upload GVX Files (Vectors)

Conditionito	200
Add Project Tracking Number	1 Skor
Show File	Ê
Send Email	
Upload Serfil	tbu
Upload Description	1
Upload Field Logs	
Refresh PID Information	ſ
Upload GNSS Vectors	4
Set up Adjustment	4
Upload Project Report	K
Review and	2

Delet

? 0

Upload GNSS Vector (.gvx) File

X

GNSS Vector Exchange Format (GVX) is designed by NOAA/NGS, aiming to provide a standard format for exchanging GNSS vectors derived from varying GNSS survey methods and manufacturer hardware. Each GVX file contains neccessary data of a GNSS vector for inclusion in a survey network for least square adjustment, as well as metadata which describes the vector.

For more information about .GVX format, please visit: NOAA/NGS's GVX: The GNSS Vector Exchange File Format.

		314)		
- 54			Name	GNSS vectors
			052.jxl.gvx	18
- 63			053.jxl.gvx	15
3			054.jxl.gvx	13
	Manager	GNSS	057.jxl.gvx	15
1	Name	vectors	058.jxl.gvx	18
- 19	058.jxl_dtg.gvx - 58.73 KB Found in	18	058.jxl_dtg.gvx	18
	project Remove		059.jxl.gvx	18
- 50			060.jxl.gvx	18
			064.jxl.gvx	9
ricor			065.jxl.gvx	17

Step 2: Upload GVX Fi

	Λ μ	T			brun-mas2	18	12	301	301	1.36	2.3
					calv-dew1	16	15	301	333	1.36	2.2
			Andre Martin 200		e087-umbc	15	11	301	797	1.35	4.31
Preferences	Man Cat	sbu <u>+</u>	viarks Marks&CC		e087-mas2	3	3	301	301	1.65	2.34
Project List	riviap Sate	ellite		Harrisburg	fran-mas2	3	3	301	301	1.27	1.38
Solutions		99	AV. N	Carlisle	fran-paac	15	13	301	301	1.26	3.34
Add Project	[210]		76	83	gorf-umbc	17	17	301	301	1.45	2.27
Tracking	n Springs	76	the second		n102-bcc1	18	18	301	349	1.24	2
Number	Somerset	TIT A	Chambersburg	York York	pond-baco	11	7	301	512	1.44	2.35
Show File	These Property			15	pond-jmt2	6	6	301	592	1.46	2.4
Sond Empil				Hanover	tane-paac	6	6	301	326	1.34	2.3
Seriu Email	C Print	1 Same			tane-pacb	12	12	301	325	1.49	2.09
Upload Serfil	Frostburg	aberland	Hagerstown			E I	A	295	jr 🛇 jr	nt2	
Upload		indential and a second s	united and a second		Rol Air	95	e e e	12	🔪 🚫 m	nas2	
Description		Mart	inchurge 70	8	OFTAIL	11-1	AST.	- V	'inelan 🔷 n	102	
Upload	d Contractor	Walt	Free	lenck 795 Toy	son	2) m	301			220	
Field Logs	A Date		340	Baltin	more	- The	120		P P	aac	
Refresh PID	50	Sand K		Daltin		8-14			<u> Ф</u> р	acb	
Information		Winchester	S 11 12	270 695		101	Dov	ver	Add	MADKS	
Lipload				Rokville 📅	<u>va</u> 1	yst.	0		Add	MANNO	
GNSS Vectors	48					(301)	AL-L		C	ORS	
Catur	~ /			Washington Q50	5		~	1-4	a a	lgo	
Adjustment	(220)	Noodstock 66		0		4	(13)		() () ()	orb	
	HI BALL			Alexandria	12 0	Easton	1 4 1 3	Lew	res 🙆 d	ene	
Upload Project Report	10 1-11 2	1 1	Y XY		s (č.	2	A	Ser ?	· 🛆 a	ode	
Тојесттероп	S QL	Luray	211			())	a tes	Rel	hoboth each	ofu	
Review and	\sim	340)	E. N.	VIR Look		STATE.	SIL		p	aiu	
	Harrisophuro	Culp	eper	55 / A		50		Ling	🍯 🖉 p	ass	
Delete Project	Casala						Saliebur	V	Y 🖉 v	ork 💌	
				Man data @200	Casala 201	1	Tarma of llos	Depart a mar	Add/D	el CORS	

Baselines

6

13

GVX Baseline Statistics

1.32

1.26

1.66

2.12

vector count vector used Span Min (s) Span Max (s) PDOP Min PDOP Max

319

362

301

301

6

13

geodesy.noaa.gov

2018-060

2018-062

Save USE Changes

2018-064

2018-058

EST Time

Step 3: Review and QA/QC Vectors

Baseline n102-bcc1 •

1105	1150	TOP	010/10	DUD ATION (-)		CDAN							
USE	VECTOR		GVXID	DURATION (S)		SPAN	HARDWARE						
-		VE	052 ivl mov	204	Start:	2018-053T11:14:15 EST	Antenna: Model:	TRMR10 NONE	S/N:	563146593			
	v	1.00	055.jxi.gvx	-301	End:	2018-053T11:19:15 EST	Receiver: Model:	TRMR10	S/N:	563146593			
-		110	052 jul mar	204	Start:	2018-053T11:34:46 EST	Antenna: Model:	TRMR10 NONE	S/N:	563146593			
	~	vo	US3.JXI.GVX	301	End:	2018-053T11:39:46 EST	Receiver: Model:	TRMR10	S/N:	563146593			
-	~	177	052 (11) 700	222	Start:	2018-053T11:52:07 EST	Antenna: Model:	TRMR10 NONE	S/N:	563146593			
	$\mathbf{\nabla}$	VI VI	055.jxi.gvx	322	End:	2018-053T11:57:28 EST	Receiver: Model:	TRMR10	S/N:	563146593			
-		140	050 interes	240	Start:	2018-053T16:43:42 EST	Antenna: Model:	TRMR10 NONE	S/N:	563146593			
	~	V13	USS.JXI.GVX	310	End:	2018-053T16:48:51 EST	Receiver: Model:	TRMR10	S/N:	563146593			
-	~		050 54	204	Start:	2018-053T17:01:15 EST	Antenna: Model:	TRMR10 NONE	S/N:	563146593			
•	\checkmark	V14	053.JXI.gVX	301	End:	2018-053T17:06:15 EST	Receiver: Model:	TRMR10	S/N:	563146593			
-			050 14	204	Start:	2018-053T17:18:02 EST	Antenna: Model:	TRMR10 NONE	S/N:	563146593			
	\checkmark	V15	US3.JXI.GVX	301	End:	2018-053T17:23:02 EST	Receiver: Model:	TRMR10	S/N:	563146593			

Baseline n102-bcc1 Solution Quality Indicators

1.0

East (cm)

1.5 2.0

-2.5

-1.0 -0.5 0.0 0.5

USE	VEC	TOR	GVX ID	ROVER AN	TENNA	ROVER HEIGHT (m)	EPOCHS USED	EPH TYPE	PDOP	SATELLITES USED	TYPE	SOLUTION TYPE	PROCESSOR NAME	MOUNT POINT	LAT (m)	LON (m)	HGT (m)
	٠	V5	053.jxl.gvx	TRMR10	NONE	2.000	301	Ultra-rapid predicted half	1.88	15=C0:E0:G9:J0:R6	Fixed	NetworkRTK	Trimble VRS3Net	VRS_RTCM3	-0.000	-0.001	0.002
	٠	V6	053.jxl.gvx	TRMR10	NONE	2.000	301	Ultra-rapid predicted half	1.28	15=C0:E0:G10:J0:R5	Fixed	NetworkRTK	Trimble VRS3Net	VRS_RTCM3	0.000	0.004	-0.005
		V7	053.jxl.gvx	TRMR10	NONE	2.000	322	Ultra-rapid predicted half	1.45	15=C0:E0:G9:J0:R6	Fixed	NetworkRTK	Trimble VRS3Net	VRS_RTCM3	0.006	0.009	0.011
		V 7	058.jxl.gvx	TRMR10	NONE	2.000	301	Ultra-rapid predicted	1.30	14=C0:E0:G9:J0:R5	Fixed	NetworkRTK	Trimble VRS3Net	VRS_RTCM3	-0.011	0.003	-0.005

2018-054

2018-056

42 9/22/2020

geodesy.noaa.gov

Step 4: Combine Post-processed Vectors and Uploaded Vectors (from GVX) in Survey Network for Adjustment

Example: Adjust Static + RTN Network

- Run least squares adjustment(s) of the combined static data and RTN vectors in the survey network
- Hold CORS (and possibly other published coordinates on passive marks) as control in network adjustments
 - Ensures survey is aligned to the National Spatial Reference System
- Check quality of results
- Submit survey project to NGS for review and publication in national database

Ongoing and Future Work

- Release newly developed OPUS-Projects to BETA for public testing and commenting (est. December 2020)
- Update OPUS-Projects User Manual
- Finish writing new specifications for establishing geodetic control with static GNSS and/or RTK/RTNs

Future of OPUS-Projects • Differential leveling → OPUS-Projects v. 6.0 • Classical observations (angles, distances) • Relative gravity (discrete) • Relative gravity (continuous) • Absolute gravity

geodesy.noaa.gov

How to Move Forward?

- Provide feedback! Send to ngs.feedback@noaa.gov
 - What are we missing?
 - What is unnecessary?
 - How can GVX be improved?
 - How can OPUS-Projects be further developed for uploaded GNSS vectors?

For More Technical Details, Refer to...

- Gillins, D.T., Kerr, D., and Weaver, B. (2019). "Evaluation of the Online Positioning User Service for Processing Static GPS Surveys: OPUS-Projects, OPUS-S, OPUS-Net, and OPUS-RS," *J. Surv. Eng.* (ASCE), 145(3):05019002.
- Gillins, D.T., Heck, J., Scott, G., Jordan, K., and Hippenstiel, R. (2019). "Accuracy of GNSS Observations from Three Real-time Networks in Maryland, USA," *Proc. 2019 FIG Working Week, Hanoi, Vietnam*, April 2019, 15 pp.
- Park, J., Kim, S., Shahbazi, A., Gillins, D., and Dennis, M. (2018). "Evaluation of Static GPS Surveying Campaigns Processed in OPUS-Projects," *Final Technical Report FY17 NA293P*, National Geodetic Survey, 58 pp.
- Jamieson, M., and Gillins, D.T. (2018). "Comparative Analysis of Online Static GNSS Post-Processing Services." *J. Surv. Eng.* (ASCE), 144(4):05018002.
- Allahyari, M., Olsen, M., Gillins, D.T., and Dennis, M. (2018). "A Tale of Two RTNs: Rigorous Evaluation of GNSS Survey Observations in Real-time Networks," *J. Surv. Eng.* (ASCE), 144(2):05018001.
- Weaver, B., Gillins, D.T., and Dennis, M. (2018). "Hybrid Survey Networks: Combining Real-time and Static GNSS Observations for Optimizing Height Modernization," *J. Surv. Eng.* (ASCE), <u>10.1061/(ASCE)SU.1943-5428.0000244</u>, 144(1):05017006.
- Gillins, D., and Eddy, M. (2017). "Comparison of GPS Height Modernization Surveys using OPUS-Projects and Following NGS-58 Guidelines," J. Surv. Eng. (ASCE)., 143(1):05016007.

geodesy.noaa.gov

Acknowledgements

OPUS-Projects v. 5.0 Development Team:

- Ira Sellars
- Mark Schenewerk
- Weibing Wang
- Jay Howard

geodesy.noaa.gov

Questions?

Dan Gillins Daniel.Gillins@noaa.gov

9/22/2020

50