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AL60RITHMS FOR CONFIDENCE CIRCLES AND ELLIPSES 

Abstract 

In many hydrographic surveying. navigation. and position location systems 

the observed position is defined as the intersection of two lines of position. 

each of which may be in error. This paper gives algorithms with new stopping 

criteria for the determination of the probability that the true position T 

lies within a circle of given radius centered at the observed position O. and 

conversely. the determination of the radius of a circle C with center 0 such 

that the probability is p that T lies within C. In either case. the circle 

centered at 0 ;s called a confidence circle. 

Confidence ellipses are also considered and are shown to be superior to 

confidence circles since they provide the same probability of location but 

generally over a significantly smaller region. 

It is assumed that the errors associated with the lines of position may 

be approximated by a nonorthogonal bivariate dependent Gaussian distribution 

where the errors are measured orthogonally to the lines of position. The 

algorithms given are straightforward and easy to implement on a microcomputer. 

Biographical Sketch of Wayne E .  Hoover 

Wayne E. Hoover is a systems analyst with the National Oceanic and 

Atmospheric Administration in Woods Hole. Massachusetts. and also is an 

adjunct professor of mathematics at Cape Cod Community College in West 

Barnstable. In 1977 he received his Ph.D. in numerical analysis from Michigan 

State University. 
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ALGORITHMS FOR CONFIDENCE CIRCLES AND ELLIPSES 

1.0 INTRODUCTION 

Hydrographic su'rveyors, navigators, and others concerned with position 

location have traditionally determined their position by means of two 

intersecting lines of position (LOPs). The LOPs may be derived from celestial 

observations, trilateration, LORAN signals, satellite signals, etc. 

Two questions important to position locators are the following: (1) What 

is the probability that the true position T. which is generally unknown. is 

located R units or less from the observed position OJ and conversely, (2) What 

is the radius of the circle C centered at 0 such that the probability is p 

that T lies within C. 
" In either case. a ci rcle of radius R which 15 centered at the observed 

position 0 is called a confidence circle. It is also called a circle of 

uncertainty or circle of equivalent probability. 

This paper will outline the mathematical aspects of these problems and 

then give new algorithms for their solution. The algorithms are straight

forward, efficient, and readily implemented on a microcomputer. 

Also, mention will be made of confidence ellipses which are actually much 

easier to calculate than confidence circles; moreover, they are superior to 

confidence circles since they provide the same probability of location over a 

generally significantly smaller area. 

Finally, several numerical examples illustrating the application of the 

algorithms will be presented. 
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2.0 MATHEMATICAl CONSIDERATIONS 

2.1 Geometry 

Designate the two lines of position by Ll and L 2, respectively, and let 

G. 0 < G < n, be the crossing angle from L l measured in a positive or 

counterclockwise direction to L 2• Let 0 denote the intersection of the 

LOPs. Thus 0 represents the observed or measured position. 

Uefine the nonorthogonal u1-u2 coordinate system such that u1 and u2 

intersect at 0, ul is perpendicular to Ll, u2 is perpendicular to L2, and the 

positive angle from ul to u2 1s n + G. This geometry follows that of Swanson 

[9] and is illustrated in Figure 1. 

F igure 1 Nonorthogonal Coordinate System 

Note that Burt. Kaplan. and Keenly, et a1 [4] and also 
"
Bowditch [2] use a 

different geometry by reversing the direction of the u2-axis. In this case, 

the positive angle from u1 to u2 equals a. Moreover, this changes the sign of 

the correlation coefficient P12. 
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2.2 Assumptions 

Throughout this paper we will assume the following: 

1. In a sman regi on G contai ni ng O. the earth is flat and the two LOPs 
are straight lines. 

2. The errors in the measurements which determine l1 and L2 are 

normally distributed random variables with correlation coefficient 

.�12' zero me�ns. and 
.
standard deviations 01 and 02 D respectively. 

where oi is measured along ui which is perpendicular to lie 

3. The bivariate error distribution 1s constant throughout the region G. 

Thus it is assumed that the errors in the measurements of the lOPs, which 

may or may not be correlated, may be approximated by a nonorthogonal bivariate 

dependent Gaussian distribution. 

This paper applies only to those position location systems for which the 

above three assumptions provide the basis for a valid error model. It can be 

a sizeable task to decide whether this model is appropriate for a specific 

position location system. 

2.3 Transformation to an Orthogonal System 

Now trans
.
form the nonorthogonal U1-"z system to an orthogonal x-y 

Cartesian coordinate system centered at 0 and oriented such that the ang�e 

from � to the positive x-axis is given by 8 .  Following convention, a 

positive angle is measured in a counterclockwise direction. These coordinate 

systems are illustrated in Figure 2. 

The transformation is given by 

� = xsin(8) + ycOS(8) 

- 3 -



ALGORITHMS FOR CONFIDENCE CIRCLES AND ELLIPSES 

U2 • xsin(a - e) - ycos(a - e) . 

The angle e. which 1s defined in the next section, 1s chosen so that the 

transformed variables are stochastically independent. 

• 

Fiyure 2 Orthogonal Coordinate System 

2.4 The Error Ellipse 

In order to determine the radius R(p) of the confidence circle C, or the 

probability p(R) associated with C. it is necessary to first calculate the 

parameters of the error ellipse. namely. the lenyths of the semimajor and 

semiminor axes and their orientation with respect to a coordinate system. 

Defining the ancillary variables 
2 

a1 = 01sin(2a) + 2P1201o2s1n(a) 

-4-
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2 is • 2s1 n (a) 

and using the transform�tion given in Section 2.3, it can be shown that the 

given nonorthogonal standard �eviations 01 and 02 are transformed to Ox and 

0y' respectively, in the orthogonal x-y Cartesian coordinate system, where 

andoX''?''0y holds for all valid values of the input variables: 0l'?"O, 

02 !.. 0, 0 < CI < B, and -1 < P12 < 1. The error ellipse is the ellipse with 

center 0, semimajor axis Ox which coincides with the positive x-axis, and 

sem1minor axis 0y which coincides with the p'ositive y-axis. 

The orientation of the error ellipse is calculated from 

tan (28) = al/�. 

Note �hat this calculation must be performed so that e is obtained in the 

proper quadrant. This can be achieved with the aid of the double argument 

arctangent function or the rectangular-to-polar function. Thus, -n/2 < e < 

n/2, where e is the angle from Ll to the positive x-axis. As before, a 

positive angle represents a counterclockwise direction. 
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I 

F;gure 3 The Error Ellipse 

The error ellipse with parameters ox' 0y' and e is illustrated in Figure 3. 

In the x-y coordinate system. the correlation Pxy between the transformed 

variables is zero. 

-6-
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2.5 Confidence Ellipses 

A confidence ellipse is an ellipse which is concentric to the error 

ellipse and which has parameters �x' �y' and 8. k is called the elliptical 

scale factor. 

S1 nce a x and a y represent the standard deviations of stochastically 

independent random variables, the addition theorem for the chi-square 

distribution may be used to show that the probability associated with a 

confidence ellipse is given by 

P = 1 - e 
-1.. k

2 
2 

• 

Conversely, the semimajor kax and semiminor kay axes of a confidence 

ellipse having specified probability p may be calculated from CJx' ay, and 

1.. 
2 

k = [-2*ln(1 - p)] • 

Thus the error ellipse is a confidence ellipse with elliptical scale 

factor k = 1 and probability approximately p = 0.3935. The 501 and 951 

confidence ellipses have elliptical scale factors approximately 1.1774 and 

2.4477, respectively. 

Figure 4 contains a graph of the elliptical scale factor as a function 

of probability. 
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6 
� 
0:: 
� 5 u 
� 
LU 4 ...J 
« u (f) 3 LU (f) a.. 
� 2 ...J LU 
0:: 
0 
0:: 
0:: LU 

ELLIPTICAL ERROR PROBABILITY p 

Figure 4 Elliptical Scale Factor vs. Probability 

2.6 Confidence Circles 

2 2 2  Let C denote a confidence circle. x + y = R • which is centered at 0 
and which has positive radius R. Then the probability p • p(R) that the true 

position T lies within a confidence circle C is 

p(R) = 211� ° X Y 

ff- i [(-L)
2
+ (..L.)2

 

e Ox 0y dxdy. 

C 

Defining the auxiliary parameters 

K = R/ox 

c = 0y/ox 
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8 = 2cJn 

y = (K12C)2 

and the functions 

w(. ) II (C2 
- 1)COS(+) _ (C2 + 1) 

it can be shown that this double integral over the circle C can be reduced to 

the single definite integral 

p'(R) = p(K,c) =sf'l f(. )�. 
, 0 

The value of this integral provides the solution to questicn (1) stated in the 

1 ntroduct ion. 

2.7 Numerical Quadrature 

Values of p(K.c) have been tabulated and are given in the Appendix. 

However. in order to use such a table. double interpolation is required. For 

values more precise than those given in the table, the integral p(K.c) must be 

evaluated numerically since it apparently cannot be expressed in closed 

form. For definite integrals of the type p(K.c). Fettis [6] has shown that if 

-9-
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a sufficiently small step size is chosen. the trapezoidal rule provides an 

estimate for �(R) with arbitrari ly small error.: 

Whenever the trapezoidal rule 1s effectively employed. Frame [7] suggests 

that linear combinations of the rule with different step sizes will provide 

additional estimates to the definite integral with only a minimal increase in 

computational effort. Such a numerical quadrature formula is the fifth-order 

derivative corrected Simpson1s rule [10] with step size h = (b - a) /n: 

fb 

a 

n-1 
f(x)dx = 3� [7[f(a) + feb)] + 14.I f(a+ih) 

1=1 

n 2 

+ 16 I f(a+ih-h/2)] - �o (fl (b) - fl (a) ]. 
i=1 

Since the integrand, f(,) = [eYw(,) - 1]/w(,). which is required for the 

calculation of p(R), is periodic with period an, is symmetric about n. and has 

continuous first derivative, fl(,) vanishes at the end points of the interval 

of integration. , = 0 and . = n. Therefore, for the definite integral under 

consideration, the derivative corrected Simpson 1s rule 1s a linear combination 

of trapezoidal sums with step sizes h = n/n and h = n/(2n) . 

The solution to question (1) stated in the introduction may now be 

obtained by applying the trapezoidal rule with step size n/(2n) to p(K.c). 

constructing from appropriate trapezoidal sums the derivative corrected 

Simpsonls value, and then using the absolute value of the difference 

-10-
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to estimate the maximum absolute error for the former calculation which is 
taken as an approximation to the proba�ililty peR). 

The technique of employing the fifth-order derivative corrected Simpson's 

rule in order to estimate the error, E, in the numerical quadrature is 

beHeved to be new and is more efficient than the customary repeated halving 

the step size until a sufficiently small difference is obtained, since the 

traditional technique uses a quadrature formula of the same order to 

approximate the error. This technique is well suited to microcomputers where 

time is more critical than on larger computer systems. 

The required inputs for the calculation of the probability peR) are °1, 

02 ' a , P12' R. and n. The value of n is chosen so that the error estimate E 

is sufficiently small. In most practical applications (i.e •• K.! 4 and c l-
0.1). a value of n • 20 will result in at least seven digit accuracy for peR). 

Question (2) stated in the introduction may now be solved by iterating 

on the radius R(p) until the desired probability is obtained. In practice. 

the iteration is actually on the auxiliary parameter K • R/ox• For values of 

peR) less than 0.9999999. K assumes values between zero and 5.7. 

These considerations provide an outline of the theoretical foundation for 

the two algorithms given in the next section for the calculation of peR) and 

R (p) associated with confidence circles. 

The calculations required for the parameters of a confidence ellipse are 

straightforward and have been given in Sections 2.4 and 2.5. 

3. 0 ALGORITHMS 

The first algorithm solves question (1) and is also referenced by the 

second algorithm. The calculation of 8 in step two is an optional calculation 

-11-
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· since it is not required for the computation of the probability p(R) 

associated with a confidence circle. The 1nput parameters are °1, °2, a, P12' 
and R. 

The second algor1thm solves question (2) and is based on the secant 

method. Note that the iteration is actually performed on K which is related 

to the radius of a confidence circle by K = R/ox• The input parameters are 

3.1 Algorithm 1 for p(R) 

2 is = 2s1 n (a) 

e = t arctan(a1/a2 ) (Note: use arctan (y,x) or P-R function) 

- 12 -
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c 

3. K 

4. y 

II RIG X 

2 
• (K/2c) 

s. Select a positive integer n (e.g., n • 4) 

6. h = nln 

2 2 
w(+) = (c - l)cos(.) - (c + 1) 

Tl = f(O) + fen) 

n-1 
T2 = I f( i h) 

i=l 

n 
= I f[ ( i - t) h] 

1=1 

7. E 

p 

8. If E is sufficiently small (e.g. , E < lO-S), accept p = peR). 

Otherwise, select a larger value for n and repeat steps 6 through 8. 

- 13 -
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3.2 Algorithm 2 for R(p) 
1 • .  Perfonm steps 1 and 2 of algorithm 1. 

2. Set t • 1 and select appropriate starting 

values for the secant method (e.g. Ko :I 0.1, K1 :I 3.9. 90 • 0.08 - p, 
and � :I 1.0). 

3. Using the value of 

where 91 = P1 - P for i > 1, perform steps 4 through 8 of algorithm 1 
to obta1n probability Pi+1. 

I -7 4. If gi+1 is sufficiently small (e. g. , g1+1 1 < 10 ), set 

R :I R(p) :I CJxKi� and stop. Otherwise, repeat steps 3 and 4 with 

1 replaced by 1 + 1. 

4. 0 N UMERICAL EXAMPLES 

The following examples illustrate the application of the two algorithms 

presented in the previous section. 

4.1 Example 1 

A navigator reports the Ship's position at 41°46' N and 50°14' W • 

. Assuming the angle of crossing between the two LOPs 1s a = 30°, there are no 

systematic errors, and the random errors in the two nonorthogonal directions 

are normally and independently distributed with standard deviations 01 = 2 nm 

anda2 = 1 nmt calculate the parameters of the error ellipse and the radii of 

-14-
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the confidence circles for the various probabilities indicated in Table 1. 

Also compute the sizes, areas, and the probabilities associated with the IdRMS 
2 2 2  

and 2dRMS circles where 1dRMS • Ox + 0y and 2dRMS = 2*1dRMS. The term 1dRMS 

1s also called radial error or root mean square error. 

Use algorithm 1 to calculate the parameters of the error ellipse: Ox m 

4.3778 nm, 0y • 0.9137 nm. and e • 24.5633°. The resulting error ellipse is 
. .. 

shown in Figure 5. 

Cont1nuing with algor1thm 1, set n • 1 and compute ZdRMS = ij.9443 nm, 

p(2dRMS) = 0.9519, and E • 4.3*10.7 where E is an estimate of the maximum 

absolute error ;n peR). Similarly calculate the values for the 1dRMS circle 

as indicated in Table 1. 

"t 
D, 2 
DZ , 
a 30 
D. 4.38 
D, .91 

• 24.� 
D,1Da .21 
IdRIIIS 4.47 
2dRIoIS 8.94 

Uz 

Figure � The Error Ellipse 
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,. 

Next, use algorithm 2 to calculate the remaining values listed in Table 

1. For reference, the IdRMS and 2dRMS values computed from algorithm 1 are 

included in Table 1. See Figure 6 for a plot of the radius of the confidence 

circle as a nonlinear function of probability. Note that 2dRMS is an upper 

bound for the radius of the 951 circle. The circular probable error or 

circular error probable, CEP, is the rad;us of the 501 circle. 

Use the elliptical scale fa�tor k • 2.4477 to calculate the semimajor and 

semim;nor axes of the 951 ellipse, 10.7158 nm and 2.2365 nm, respectively. 
2 

The area of the 951 ellipse 1s 75.3 nm . Since the radius of the 951 circle 
2 

is 8.6302 nm, the area of the 951 circle is 234.0 nm . Thus the area of the 

951 circle is 2111 larger than the area of the 951 ellipse and yet both 

provide the same confidence for pOSition location. 

Table 1 Parameters associated with (11 = 2, (12 = I, a = 30°, and P12 = 0 

Probability 
p 

.01 

.10 

.50 
• 68218 

.75 

.90 

.95 

.95786 

.99 

.999 

.9999 

.99999 

Radius R 

0.2846 
0.9565 
3.1033 
4.4721* 

5.1216 
7.2604 
8.6302 
8.9443** 

11.3144 
14.4349 
17.0573 
19.3592 

* 1eRMS 
** 2eRMS 

Area n Error Bound A E 

0.3 1 1.3E-13 
2.9 1 1.9E-1 

30.3 3 6.2E-8 
62.8 4 

. 
1.8E-1 

82.4 5 1.8E-8 
165.6 6 3.4E-1 
234.0 7 2.5E-7 
251.3 7 4.3E-1 

402.2 8 6.IE-7 
654.6 9 4.0E-1 
914.1 10 1.0E-1 

1177 .4 10 1.1E-1 

-16-
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Figure 6 Confidence Circles with 01 = 2, 02 = I, Q = 30°, and P12 = 0 
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ALGORITHMS FOR CONFIDENCE CIRCLES AND ELLIPSES 

4.2 Example 2 

Consider a position location system where 01 • 02 • 1 unit and the angle 

of crossing a varies between 0 and n. For various values of a and assuming 

P12 = O. Table 2 gives the parameters of the error ellipse and the sizes. 

areas. and probabilities associated with the 951 and 2dRMS confidence 

circles. Table 3 gives the areas of these 951 circles and ellipses as a 

function ofa. Figure 7 shows a plot of the radius of the 951 circle as a 

funct i on of a • 

4.3 Example 3 

(See Bowditch [2].) Assuming 01 = 15 m. 02 • 20 m. a • 50°. and P12 • O. 

determine the probability of location within a circle of radius R • 30 m. 

Set n = 2 in algorithm 1 and obtain Ox = 29.8895 m. 0y = 13.1023 m. e = 

-7 15.1133°. and p(30 m) = 0.6175. The error estimate is E = 1.3*10 while the 
-8 

actual error is 1.0*10 • 

Set n • 3 in algorithm 2 and compute the radius of the 0951 circle: R = 

-6 60.2437 m with E • 1.4*10 • Also. using n • 5. the radius of the 99.91 

circle is found to be R = 99.3274 m with E • 8.1*10
-9 

• 

The parameters of the 951 ellipse are kox • 73.1620 m. koy • 32.0712 m. 
2 

and 8 = 15.7733°. The area of the 951 c1 rele, 11401.8 m is 551 greater than 
o 2 

the area of the 951 confidence ellipse. 1311.4 m • 

- 18 -
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Table 2 Parameters associated with Gl - Gz - 1 and PIZ - 0 

Radius 
a e Gx Gy C-GlGx 2dRMS 

0.1 (179. 9) 0.05 (-.05) 810. 2848 .70711 .00087 1620.5702 

1 (179) 0.5 (-.50) 81.0295- .70713 .0087 162.0652 

5 (175) 2.5 (-2.5) 16.2108 . 70778 .0437 32.4526 

10 (170) 5 (-5) 8.1131 .7098 .0875 16.2883 

20 (160) 10 (-10) 4.0121 .1180 .1163 8.2698 

30 (150) 15 (-15) 2. 1321 .1321 .2619 5.6569 

40 (140) 20 (-20) 2.0674 .7525 .3640 4.4003 

50 (130) 25 (-25) 1.6732 .1802 .4663 3.6922 

60 (120) 30 (-30) 1.4142 .8165 .5774 3.2660 

10 (110) 35 (-35) 1.2328 .8632 .7002 3.0099 

80 (100) 40 (-40) 1.1001 .9231 '.8391 2.8121 

90 45 1.0000 1.0000 1.0000 2.8284 

Area Prob Radius 
R-ZdRMS p(R-2dRMS) R(p-0.95) 

8250 600.6 .95450 1588.1292 

82 514.3 .95451 158.8165 

3 308.6 .95465 31.7805 

833.5 .95511 15.9174 

214.9 .95693 8.0140 

100.5 .95986 5.4069 

60.8 .96375 4.1280 

42.8 .96833 3.3867 

33. 5 .97316 2.9266 

28.5 .97753 2.6458 

25.9 .98059 2. 4950 

25.1 .98168 2.4477 

Area 2cRMS 
R(p-0.95) IIb-lI.§5J 

7923 581.2 1.0199 

79 239.4 1.0205 

3 173.0 1.0211 

7915.0 1.023 3  

201.8 1.0319 

91.8 1.0462 

53.5 1.0&60 

36.0 1.0902 

2&.9 1.1160 

22.0 1.1316 

19.6 1.1511 

18.8 1.1555 
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Table 3 Areas of 95S Confidence Circles and Ellipses 
when CJ1 II CJ2 .. 1 and P12 • 0 

a CJx CJ � =Area of �IIArea of 
y 

9!)S Circle 95S Ellipse 

0.1 (179.9). 810.2848 .70711 7923 581.2 10 784.6 
1 (179) 81.0295 .70713 79 239.4 1 078.5 
5 (175) 16.2108 .70778 3 173.0 216.0 

10 (170) 8.1131 .7098 796.0 108.4 

20 (160) 4.0721 .7180 201.8 55.0 
30 (150) 2.7321 .7321 91.8 37.6 
40 (140) 2.0674 .7525 53.5 29.3 
50 (130) 1.6732 .7802 36.0 24.6 

60 (120) 1.4142 .8165 26.9 21.7 
70 �110) 1.2328 .8632 22.0 20.0 
80 100) 1.1001 .9231 19.6 19.1 
90 1.0000 1.0000 18.8 18.8 
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A1 
A; 

734.71 
73.47 
14.69 
7.34 

3.67 
2.44 
1.83 
1.47 

1.24 
1.10 
1.02 
1.00 
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III 1 and P12 III 0 Figure 7 Radius of the 95� Confidence Circle when 01 � 02 
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4.4 Example 4 

Repeat Example 3 with correlation P12 • 0. 5. Algorithm 1 with n • 3 gives Ox • 
-8 36.1325 m, ° y = 9.3864 m, e • 19.5924°, and p(30 m) • 0.5666 with E • 1.9*10 • 

Algorithm 2 with n = 6 gives for.the 951 circle, R = 71.4658 m and 

E • 5.8*10
"'9

. The rad·ius of the 99.91 circle 15 calculated with n • 7 to be 
-7 

R • 119.2786 m where E = 6.1*10 • 

The 951 ellipse has parameters kax = 88.4433 m, kay = 22.9756 m, and 
2 

8 = 19.5924°. The area of the 95S circle, 16045.2 m is 15lS greater than the area 

of the 95S confidence ellipse, 6383. 8 m2 
• 

Comparing the results of Examples 3 and 4, it may be observed that the effect 

of changing the correlation from zero to 0.5 is to increase by 411 the area of the 

95� circle while the area of the 95� ellipse is decreased by 13�. Moreover. the 

orientation of the 951 ellipse is increased from 15.7733° to 19.5924°. 

These examples suggest that confidence ellipses are superior to confidence 

circles since they provide the same probability of location but over a significantly 

smaller area. To be more precise. for any legitimate values of °1, °2, a, and P12' 

the area of the 951 ellipse is n*ln(400)0�y while the area of the 951 circle is 

less than the area of the 2dRMS circle, 4n(0� + o�). 
In the best of circumstances, that is when 01 = °2, a = n/2, and P12 = 0, the 

area of the 951 circle 1s equal to the area of the 95� ellipse. However, as Example 

1 shows, in less than ideal conditions the 951 circle can be several hundred percent 

larger than the 9SS ellipse. Clearly, in such situations, for any probability the 

confidence ellipse is to be preferred over the confidence circle since a 

substantially smaller area provides the same probability of location. 
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5.0 EQUIVALENT FORMULAS FOR THE ERROR ELLIPSE 

Defining 

A 

B 

c 

it can be shown that the semimajor and semiminor axes of the error ellipse may 

be calculated from 

or 

l. 2 [ 2 2 2 ,,2 = � csc (a) A + [A - B ] ] 
x 

2 2 2 t i = t csc (a)[ A - [A - B ] ] 
Y 

2 o� = t A*csc (a) + C*csc(2&) 

2 
02 = l- A*csc (a) - C*csc(2e). 

y 

S.l Special Cases 

For the special case 01 = 02 = 0. and P12 = O. it can be shown that the 

parameters of the error ellipse simplify to the following: 
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ax lIa*csc(a}[1 + Icos(a) 1 ] t-

.1. 
a y • a *csc(a )[ 1 - I cos (a ) 1]

2 

e • a/2. 

Burt, Kaplan, and Keenly's [4] and Bowditch's [2] formulas for this 

special case must be used with caution since their formulas for Ox and ay 

implicitly require that the crossing angle between the two LOPs must be 

acute. Their formulas give incorrect results for obtuse crossing angles. 

Now if a1 = O2 = a, P12 = 0, and a is restricted to values strictly 

between 0 and n/2, then Ox and ay may be further simplified to 

-1-
2 a x = 2 a *csc(a/2) 

-t-
° y = 2 a*sec(a/2) 

Finally, if a1 = a2 = a, P12 = 0, and a • n/2, then all calculations can 

be greatly simplified to the circular normal distribution: 

ax II a 

ay =a 
e = 0 

-1- R 2 

p(R) = 1 - e [G] 

t 
R ( p) = CJ [-2* 1 n (1 - p)] • 
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6.0 APPLICATION TO LORAN-C 

Bregstone [3]. Collins [5]. Pierce. McKenzie. and WoodWard [8]. and 

Worrell [12J state explicitly or assume implicitly that assumptions (1). (2). 

and (3) listed in Section 2. 2 with P12 • 0 may be applied to LO�C. Swanson 

[9] also accepts the three assumptions but suggests a value of 0.5 for the 

correlation of the time-difference or TO errors. 

Amos and Feldman [1] point out that the TO error is a function of .many 

variables. In reality. because of the current design of many LORAN-C 

receivers. the central limit theorem of probability theory applies and 1t 1s 

reasonable to assume that the TO errors are approximately nonmally 

distributed. 

The value for the corr�lation P12 is often taken as zero; however. 1t is 

11kely that another value such as 0.5 should be used. Significant differences 

1n the s1zes and orientations of confidence ellipses as well as the sizes of 

confidence circles may be observed if the correlation is taken as 0.5 instead 

of zero. 

The U.S. Coast Guard periodically publishes revised specifications of the 

transmitted LORAN-C signal. In this respect. see reference [llJ. The current 

value given for the standard deviation of the TO erors is 100 nanoseconds. 

7.0 CONCLUSIONS AND RECOMMENDATIONS 

Algorithms with new stopping criteria have been given which may be used 

to solve two standard problems in position location: (1) Find the probability 

p that the true position T 1s within a circle of radius R centered �t the 

observed position OJ and. (2) Find the radius R of the circle C centered at 0 

such that the probability is p that T lies within C. 
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It is assumed that the errors associated with the lines of position may 

be approximated by a nonorthogonal bivariate dependent Gaussian distribution 

where the errors are measured orthogonally to the LOPs. The algorithms 

presented for this model are readily implemented on a microcomputer. 

Moreover, they are practical since they avoid the use of probability curves, 

tables. charts. nomograms. fictitious functions and angles of cut, special 

ratios, sigma star factors, double Langrangian interpolation. and Bessel 

functions which are required by some methods of solution. 

Numerical results confirm the high accuracy and efficiency of the 

algorithms presented herein for the calculation of the parameters associated 

with the error ellipse and confidence circles • 

. Confidence circles are conceptually easily understood and frequently 

used; however, with the advent of microcomputers with powerful graphics 

capabilities, confidence ellipses should be considered as a superior 

alternative in applications where confidence circles have traditionally been 

used since much less computation is required for the parameters of a 

confidence ellipse than for a confidence circle. Moreover, the area of a 

confidence ellipse is generally substantially less 'than the area of a 

confidence circle having the same associated probability; this can be 

important not only in routine position location, but even more so, 1n critical
" 

search and rescue missions. 

Finally. as previously stated. the algorithms are appropriate only when 

the error model described in Section 2.2 is valid for the particular position 

location system under consideration. Also note that the algorithms must be 

modified in situations such as the missile or target problem where the errors 

are measured parallel to the axes of a coordinate system rather than 

orthogonally to the LOPs as is the case in position location calculations. 
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APPEIIIII: CIRCULAR [RROII PRCIIA8IL1T1ES 
lie 0.0 0.1 0.2 0.3 ... .. 5 0.6 0.7 0. • G.9 1.0 

0.1 .079U567 .1M43911Z .cil421l97 .DlMI77! .01238751 .Il0l93781 • 111112M 12 .0071157. .110623002 .DD5So1OO7 • ..,.98752 

0.2 .158Sl9I2 .13397 .. 1 .01145339 .01283969 .1MB2'140 .03901935 .032712'1 .028141115 .02468247 .02197179 .0198D133 

0.' .235822" .221381M3 .17393007 .13182815 .IC1J9It32 .111515354 .07Itl031 .l1li213815 .0S0I65986 .1M876397 .114400252 
0.4 .311114348 .30102290 .26UI811 • 213901153 • 17421M56 .145181117 .1237.82 • .10762379 .09S1MI61 .11150326' .07688365 

0.5 .38292492 • 375S1143 .34817902 .30030019 .15329533 .21521172 .1857 .. 89 .16261303 .1 .. 39413 • 12962B16 • l171an 0 

0.6 .45149376 ... 5771116 •• 2556056 .384637'1 .'3573M2 .29146123 .254817.1 .22511143 .2Il0l7981 .18117832 .16472979 

0.7 .51607270 • 511 51M81 .49606135 .46332S11 .417111629 .31993053 .32803032 .29256543 .21293740 .23115134 .11729546 
0.8 .57628920 .5725956' • 561M4571 .53493877 .494111Z9 ... 7UIII0 .40256292 .31271224 ·.32834532 .29897012 .17385OM 
0.9 .63187975 .62117213 .61913So11 .59931400 .56515643 .52139984 .U5937!7 .43331291 .395327.7 .31201358 .S33D2319 

1.0 .61261949 .680232So1 .67235867 .65612424 .62911495 • 59009531 • SoI613196 .50257901 .46214212 .4m5533 .39341934 

1.1 .72866711 .72665967 .72026123 .70796818 .6159.73 .65244119 .61163111 .56874674 .52724621 .411787.0 .45392557 
1.2 .76986016 .76822148 • 763031M9 .75321755 .735U5I0 .70791732 .6m2689 .63011681 .51934.43 .54987315 .51321774 
1.3 .80139903 .80506480 .800115535 .79299679 • 77.USIIII .75672656 .72496735 .61731223 .64743948 .607'8223 .57114426a 
1.4 .83 .. 8668 .83741M8' .83400178 • 82771M77 .81698517 .7989281' .77201195 .738301194 .70078999 .66230358 .62&68890 
1.5 .86638560 .86551266 .86277282 .85773118 ... 930716 .835011160 .81292873 .71339628 .748.5002 .71225465 .67534753 

1.6 .89010142 .889700113 .887S111i02 .88349137 .87686446 .86575592 .... 783930 .82262'57 .7.171.37 .75747011 .72196270 
1.7 .91116907 .91031019 .91156194 .90537663 .90017456 .89155362 .87731164 . • 85624712 .82911370 .79718816 .7MZS392 
1.8 .92813936 .92769639 .92631248 .92379894 .91972753 .91306800 .90191102 .81'66237 .86132384 .83321750 .111210130 1.9 .94n6688 .,4ZZ1819 .9411Z9I' .'3'I58S7 .'3H1SSS .'30861SC .1Z2ZZ77Z .'0836C188 .88867314 .8639149S •• nszssc 
2.0 .9So149'74 .95422722 .95337750 .95184149 .9.,38155 .9'545458 .!l3B84177 .!l2787988 .!l1157619 .81011nl .86466&72 

2.1 .96427116 .96405976 .9n40m .9622126' .96031702 .9S732052 .95229986 .94376684 .93050133 .91227137 .11897'947 

2.2 .97219310 .97203038 .97152372 .97061093 .96915971 .96611448 .96310169 .95655220 .94593857 .93068211 .91107138 
2.3 .97855178 .U8427S1 .97801079 .97734503 .97624187 .97452393 .'7169345 .96673013 .95831311 .915811148 .92899465 
2.4 .98360193 .9n51079 .98321798 .98269178 .'8185941 .98057026 .97846612 .97474955 .96126981 .958111039 .913116524 
2.5 .'8758067 .98750994 .98729005 .98689528 .98627204 .98531115 .'8375690 .98100352 .'7605221 .96791357 .'5605307 

2.6 .99067762 .99062493 .99016116 .99016742 •• 8970146 .'11"331 .98785268 .98583311 .'8210228 .97569685 .96595255 
2.7 .99306605 .99302712 .99290619 .99268943 .99234833 .99182603 .99099441 .98.52681 .98675296 .98178371 .97.7859 
2.8 .99488974 .99486123 .99477268 .99461409 .9943MB5 .9939 .. 23 .99338209 .99232491 .99028110 .986487590 .98015891 
2.9 .99626137 .99624767 .99618340 .9960&837 .99588778 .99561263 .99517978 .99442459 .9929C821 .99II1II026 .98507921 
3.0 .99730020 .99728531 .99723907 .99715634 .997112662 .99682936 .996!i2052 .99598541 .99C92739 .992792S3 .9B1189loo 

3.1 .99806479 .9980Sol17 .9980211' .99796223 .99786985 .99772961 .99751096 .99713480 .99638509 .99481678 .99181130 
3.2 .99862572 .99861821 .99859490 .99855325 .991M8804 .99838920 .99823562 .99797327 .997'4776 .99631047 .99401398 
3.3 .99903315 .99902789 .99901156 .99898239 .99893677 .99886771 .99876073 .99857919 .99821466 .997'0035 .99561216 
3.4 .9993251. .99932249 .!l9U1US .919291192 .9I92S928 .9I92UIS .99!113lSS .99!10129Z .99876Z61 .9181867' .19611128 
3.5 .9I!lS347. .999S3223 .99'SI." .99951052 .99M117J .99945594 .99910S33 .99!132046 .99915I12S .998748112 .99781251 

3.6 .99968178 .99968007 .99967476 .99966527 .99965047 .99962813 .99959377 .99953144 .999C2181 .99914419 .99846619 
3.7 .99978440 .99978324 .99977965 .99977325 .99976326 .99974820 .999725011 .99968661 .99961019 .999121114 .99893!r1Z3 
3.8 .99985530 .9998SC53 .99985213 .99984785 .99981117 .99983111 .99981568 .99979017 .99973960 .9996un .99926820 
3.' .99990381 .99990329 .99990170 .99989886 .99989444 .99911778 •• 9987758 .99986078 .99982765 .99974257 ."'�04 

4.0 .99993666 .99993632 .99993527 .99993341 .9999.1 .99992614 .99991946 .999911149 .99911697 .99983090 .999664So1 
4.1 .99995868 .99995847 .99995779 .99995657 .99995468 .99995185 .99994nl .99994011 .99992656 .999890112 .",nlls 
4.2 .99997331 .99997317 .99997273 .99997195 .99997073 .99996190 .99996611 .99996156 .99995273 .99992917 .99985225 
4.3 .99998292 .99998283 .99998255 .99998205 .99998127 .99998011 .99997833 .99997544 ."'91985 .99995483 .99990341 
4.4 .99998917 .99998912 .99998894 .99991163 .99998813 .99998740 • 99998628 .9999 .... .99998095 .99997147 .999937" 
4.5 .99999320 .99999317 .99999306 .99999286 .99999255 .99999209 .99999139 .99999015 .999911111 .99998216 .99995993 

4.6 .99999578 .99999575 .99999568 .99999556 .99999S37 .999995111 .999994" .99199395 .99999261 .99998895 .99997451 
4.7 .99999740 .99999738 .99999734 .99999727 .99999715 .99999697 .99999671- .99999628 .99999546 .99999322 .""..03 
4.8 .99999841 .99999841 .99999838 .99999833 .99999826 .99999816 .99999799 .99.99773 .99999724 .99999S11 .99999007 
4.' .99999901 .99999904 .999999112 .99999899 .99999895 .99999119 .91999879 .99999863 .99999833 .99999752 .99999_ 
5.0 .99999943 .99999942 .99999941 .99999940 .99999937 .99999933 .99999928 .99999918 .99999901 .99999852 .99999627 

5.1 .99999966 .99999966 .99999965 .99999964 .99999963 .99999961 .99999957 .99999952 .99999941 .99999913 .99999775 
5.2 .99999980 .99999980 .99999980 .99999979 .99999971 .99999977 .99999975 .99999972 .99999966 .99999949 .99999866 
5.3 .99999911 .99999911 .99999911 .99999911 .99999987 .99999987 .99999985 .'9999984 .99999980 .99999971 .99999921· 
5.4 .99999993 .99999993 .99999993 .99999993 .99999993 .99999992 .99999992 .99999991 .999999B9 .99999983 .99999953 
5.5 .99999996 .99999996 .99999996 .99999996 .99999996 .99999996 .99999995 .9999999S .99999993 .99999990 .99999973 

5.6 .99999998 .99999998 .99999998 .99999998 .99999998 .99999998 .99999997 .99999997 .99999996 .99999995 .99999985 
5.7 .99999999 .99999999 .99999999 .99999999 .99999999 .99999999 .99999998 .99999998 .99999998 .99999997 .99999991 
5.8 .99999999 .99999999 .99999999 .99999999 .99999999 .99999999 .99999999 .99999999 .99999999 .99999998 .99999995 
5.9 1.00000000 1.00000000 1.00000000 1.00000000 1. oooooooo 1.00000000 1.00000000 .99999999 .99999999 .99999999 .99999997 
6.0 1.00000000 1.00000000 1.00000000 .99999998 

6.1 .99999999 
6.2 1.00000000 

p(lt.c) • problblllt, thlt I point lies within I ctrcl. ""ose cent.r ts It the ortgtn .net ""os. r.dlus II R • Ito •• llere 
c • a"ax wiler. ax Is the lIrger sUndlrd deviation. TIle tlble glv" ,elu" of the sUnderel orthogonll blverlate Indeptfldtftt 

Glusslln distribution. 
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