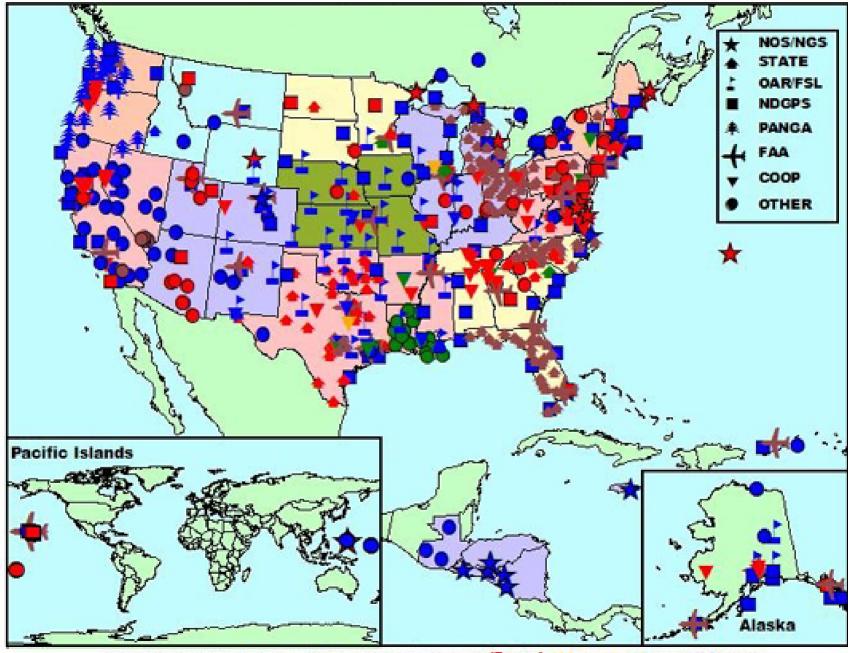
Ionosphere monitoring using NOAA's CORS network

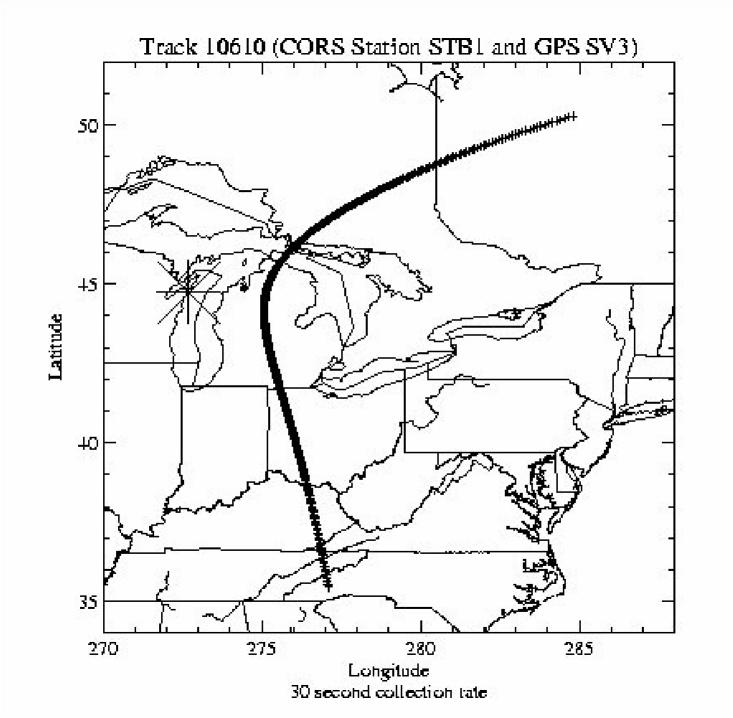
Dru A. Smith, Ph.D. National Geodetic Survey National Oceanic and Atmospheric Administration

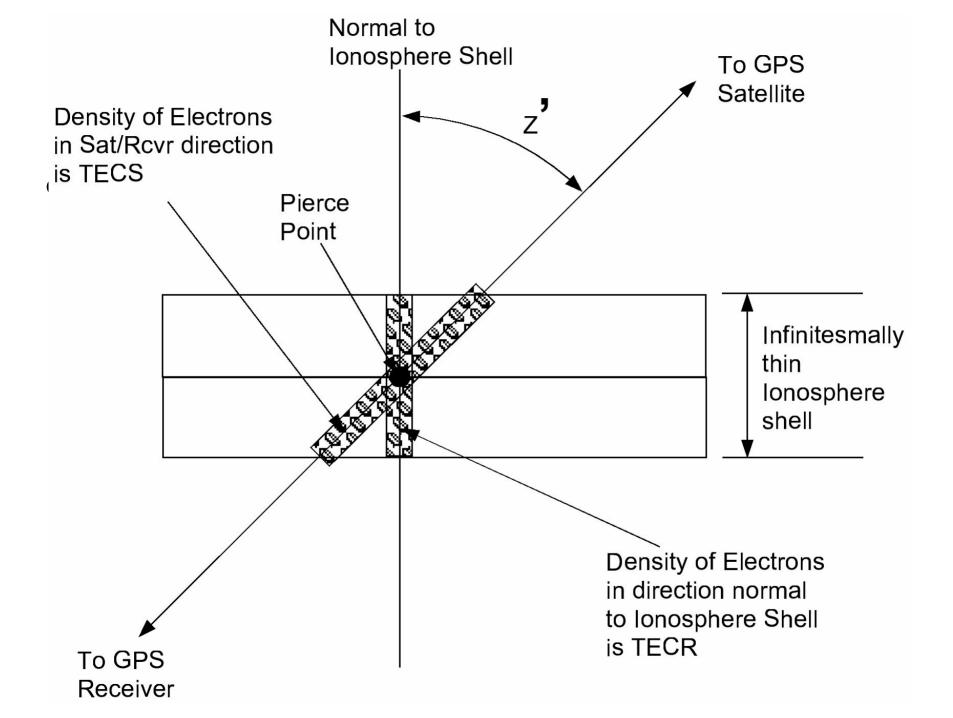
ION GNSS 2004 September 21-24, 2004 Long Beach, CA

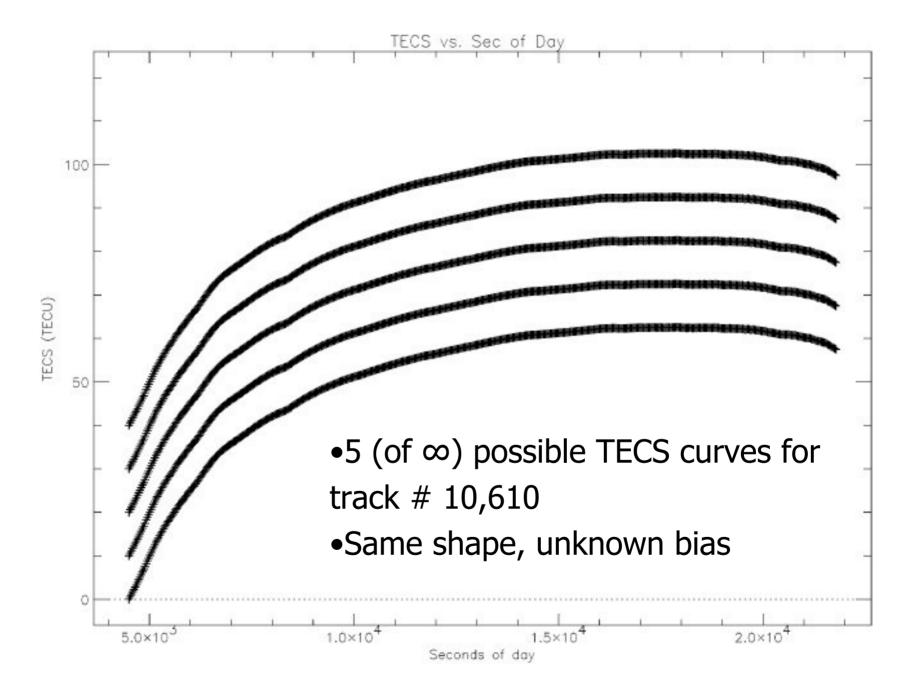

Topics of Discussion

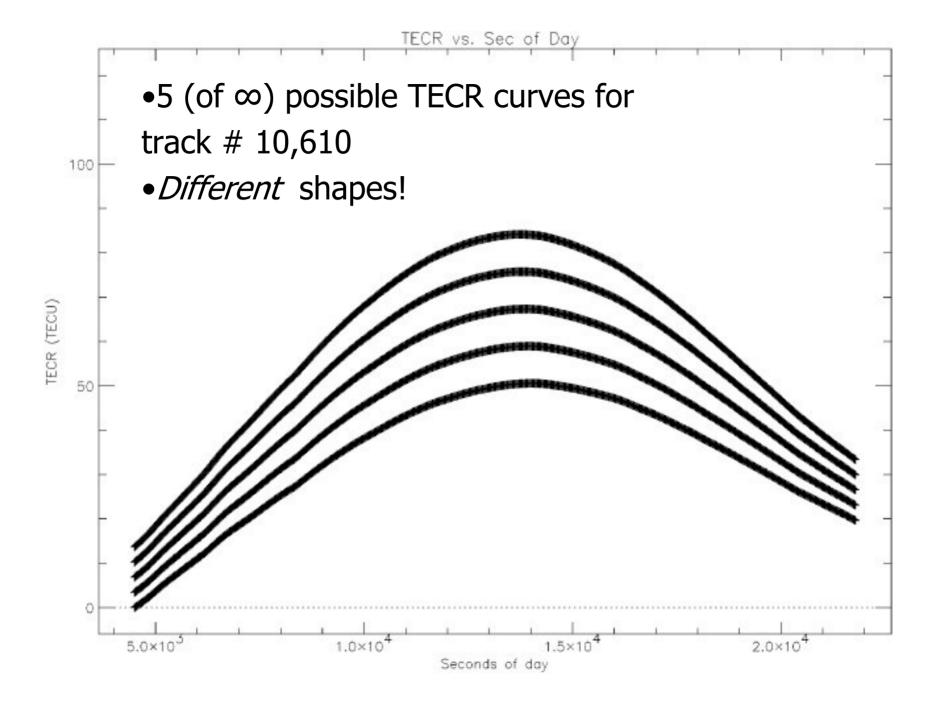
- Geodetic need for Ionosphere
- Model/Equations
- Initial tests
- Full day solution
- Future directions

Geodetic need for ionosphere delays

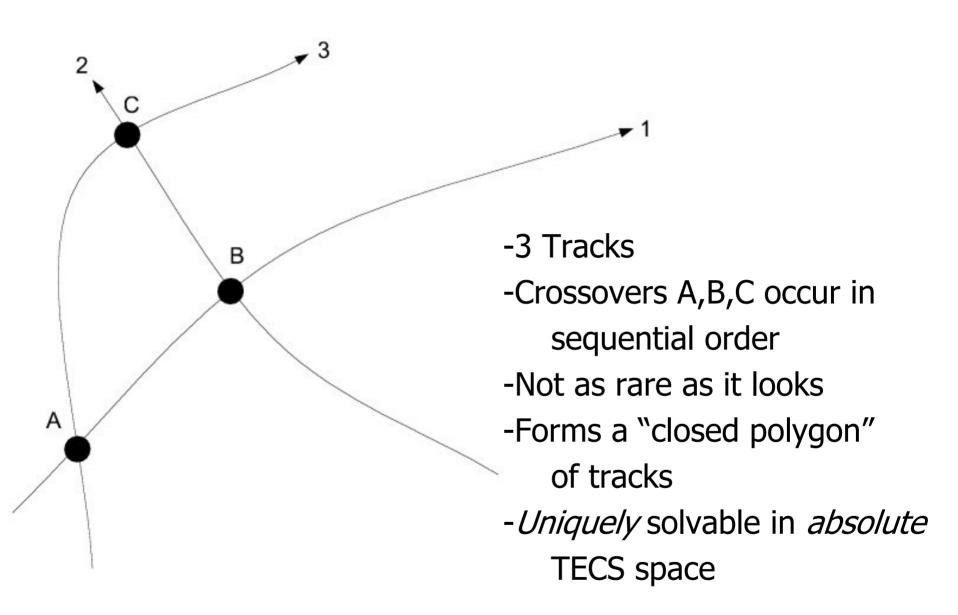

- Frequency-dependent signals in GPS:
 - Ambiguities
 - Ionosphere
 - Multi-path (assumed zero initially)
- NOAA has developed an innovative new method for modeling <u>absolute</u> Ionosphere delays from <u>ambiguous</u> carrier phase data
- All data from NOAA's CORS network

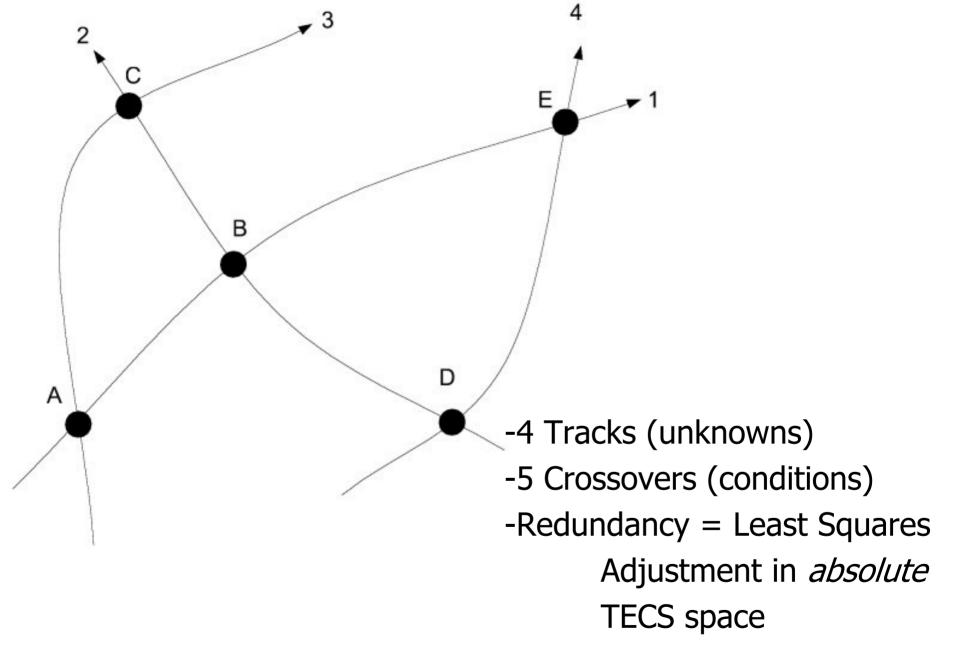

CORS Coverage - June 2004




Symbol color denotes sampling rates: (1 sec) (5 sec) (10 sec) (15 sec) (30 sec) Craig 6/04/2004 Assumptions and model

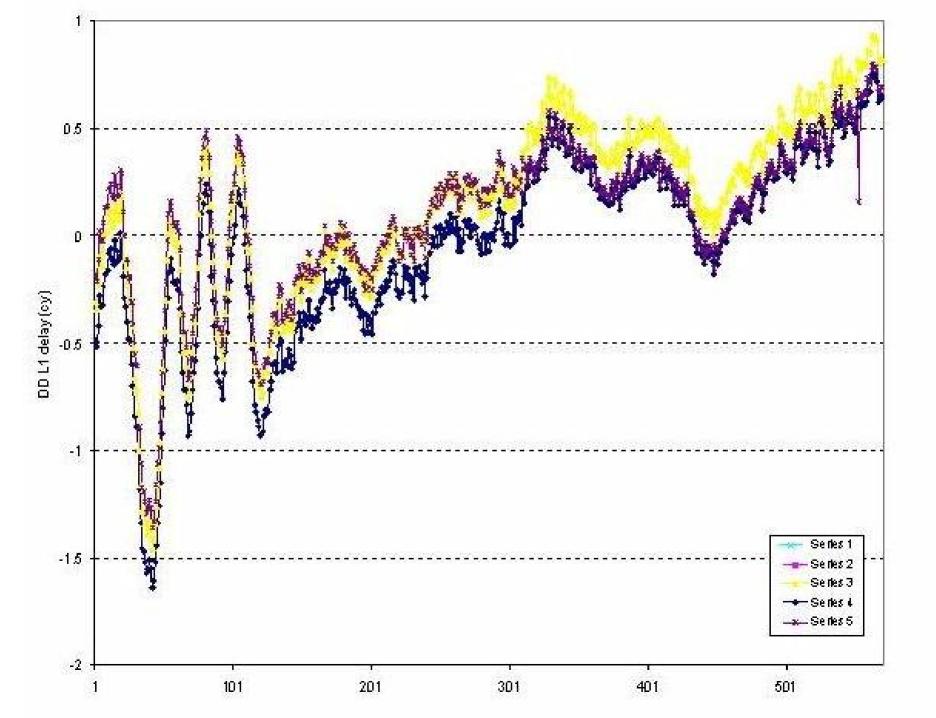
- 2-D "condensed" TEC shell (epoch = pierce point)
- Focus on *fast*, *accurate* ionosphere delays; not on realistic 4-D electron distribution
- Mapping pierce points without loss of lock yields a <u>track</u>
- CORS yields about 20,000 tracks every day




Solving for biases with crossovers

- Solve:
 - 1 TECS bias per track
- Consider two tracks that pierce the ionosphere at the same place, at the same time (i.e. a "crossover")
 - TECS(ϕ , λ ,t,track a) \neq TECS(ϕ , λ ,t,track b)
 - TECR(ϕ , λ ,t,track a) = TECR(ϕ , λ ,t,track b)

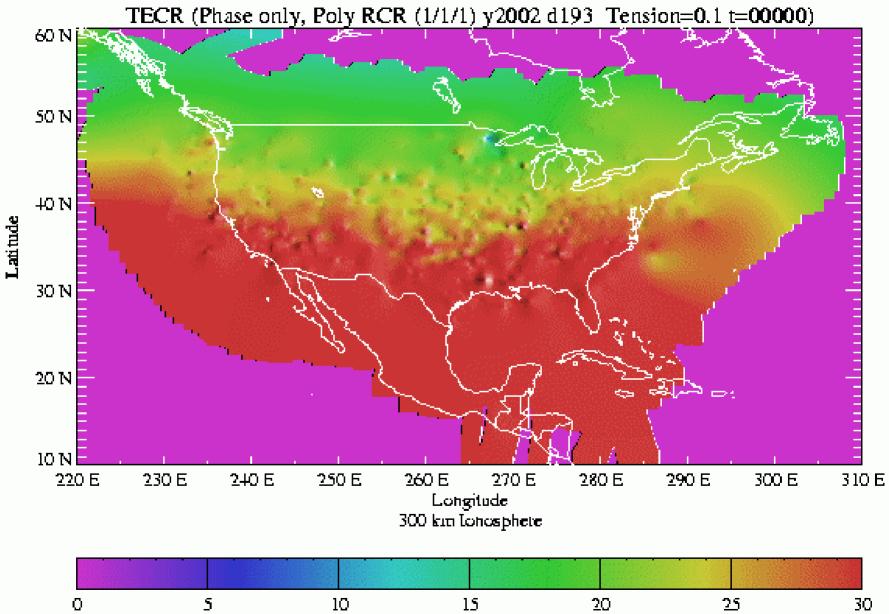
Using Crossov


- By itself, one crossover has:
 - 1 condition (TECR equality)
 - 2 unknowns (TECS biases for 2 tracks)
 - Thus, unsolvable as is
- Need conditions \geq unknowns
- Closed polygons is the solution

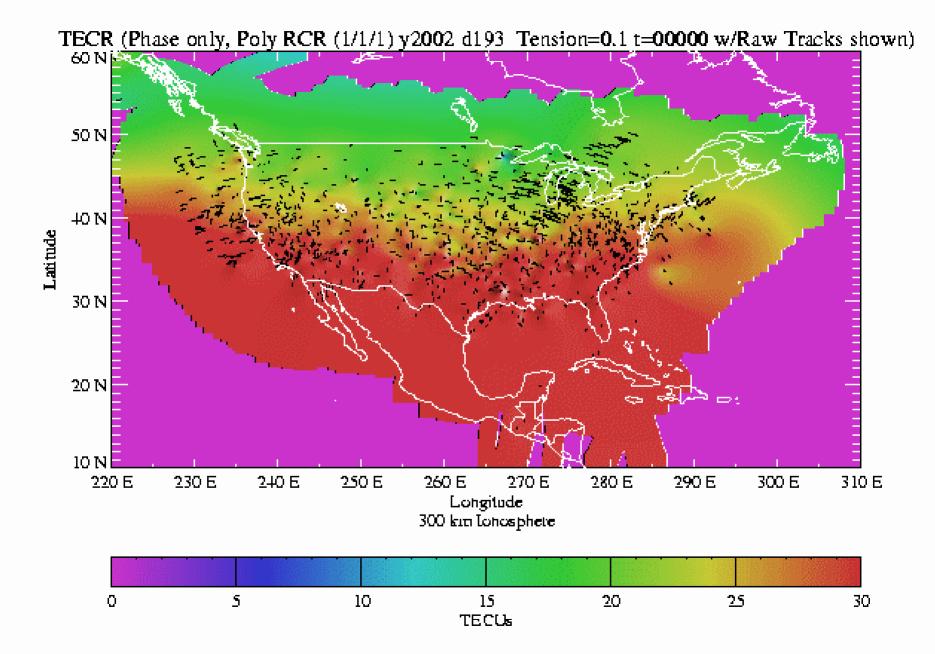
- Small "tracknets" of 10-12 tracks formed
- Proof-of-concept
- Absolute delays converted to double difference delays
- DD delays good to 0.1± 0.01 TECUs against "truth" (Ambiguity resolving software)

- Day 193 (July 12) of 2002
- 307 CORS stations
- 16,896 Crossovers (conditions)
- 8298 Tracks (unknowns)

- Unzip/read hundreds of RINEX.gz files
 2 hours
- Clean 11 Million data pts (cycle slips, etc)
 30 min
- Solve 8298 x 16896 sparse linear system
 - 30 <u>seconds</u> to get 8298 biases
 - -10 minutes to get σ_{bias}

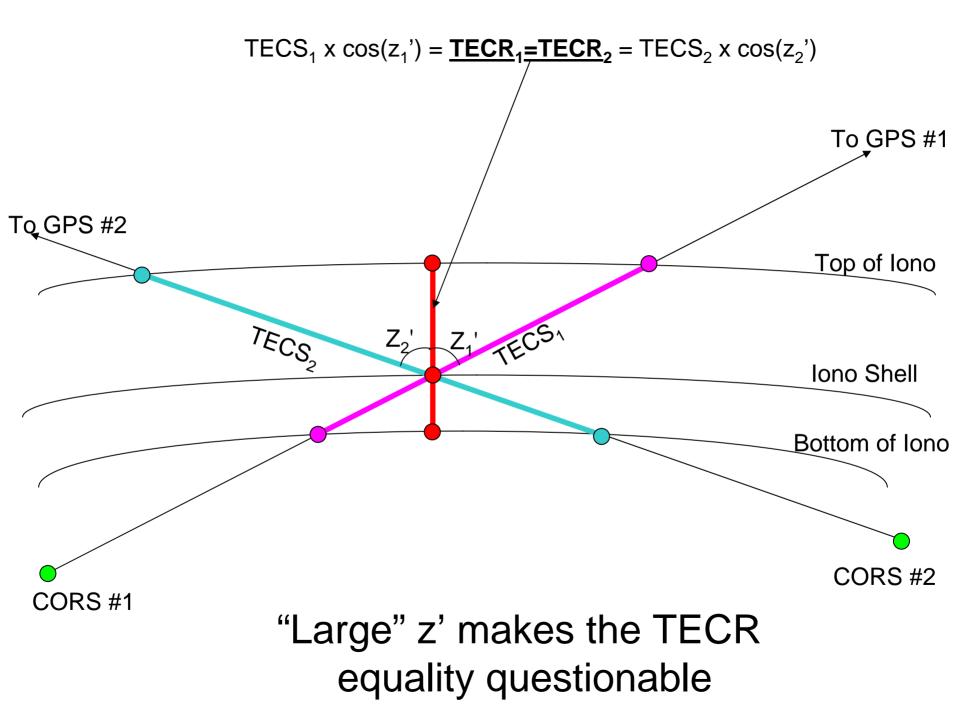

Full day solution (cont)

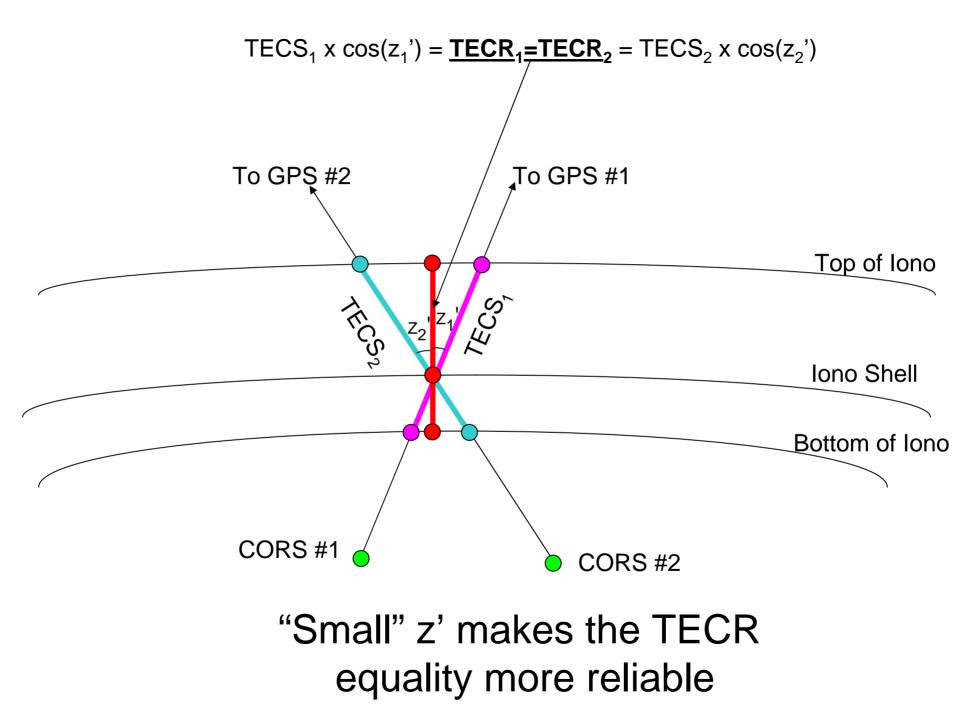
- Post Fit Crossover stats (TECUs) - -0.004 ± 0.51 (Min -3.7; Max +4.0)
- A-posteriori σ_{bias} estimates: - Ave(σ_{bias}) = ± 1.1 TECU (Min 0.22, Max 10.7)


Full day solution Animations

- Animation without tracks
 - <u>gif</u>
 - <u>avi</u>
- Animation with tracks
 - <u>gif</u>
 - <u>avi</u>

Smith, D.A., Ionosphere from CORS, COSPAR 2004



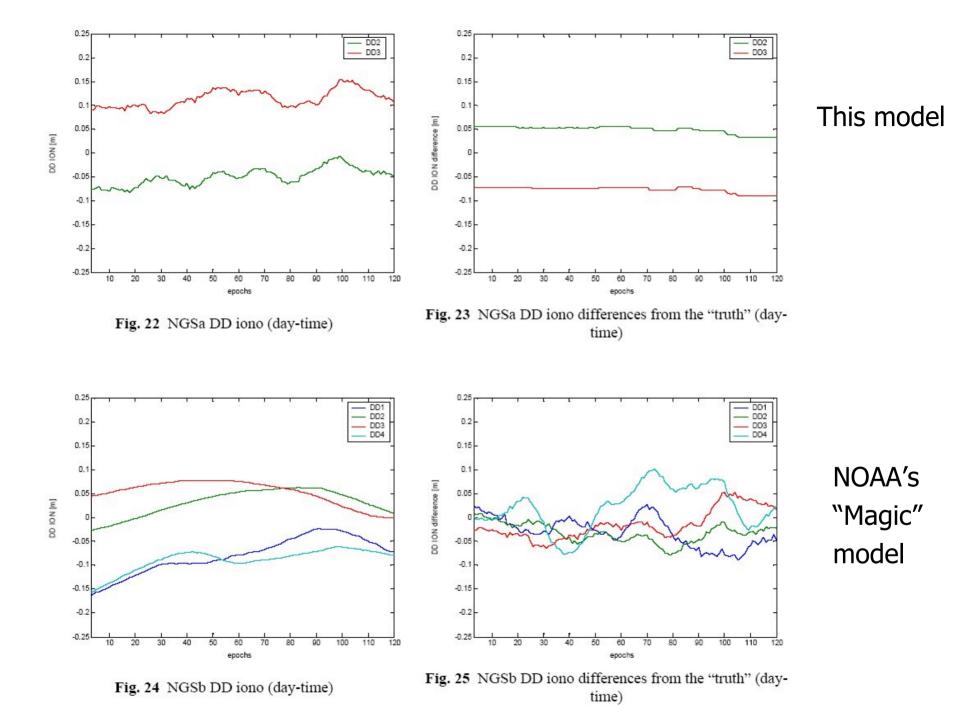

TECU₅

Full day solution (cont)

- Average a-posteriori σ_{bias} of ±1.1 TECU reasonable, but larger than hoped for
- Sub-TECU crossover residuals show tight "locking" or consistency of tracknet
- Overall noise in grids needs improvement
- General conclusion:
 - "Promising" but not by any means "done"
 - Initial analysis indicates <u>near-horizon crossovers are</u> <u>the primary error source</u> (TECS=TECR/cos z' unreliable)

Latest Results

- Ohio State University compared various Ionosphere estimates at Ohio CORS stations
- Crossovers restricted to 40 degrees above the horizon
 - Avoids erroneous biases from low-elevation crossovers
 - Reduces number of tracks immediately solvable from tracknets (unsolved tracks need interpolation from nearby solved tracks)


Report for NOAA/NGS

On:

Accuracy analysis of various NGS ionosphere estimation models

Dorota Grejner-Brzezinska, Pawel Wielgosz, Israel Kashani

Department Of Civil & Environmental Engineering & Geodetic Science The Ohio State University 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210 Tel: 614-292-0169; Fax: 614-292-2957 Email: <u>dbrzezinska@osu.edu</u> Email: <u>kashani.1@osu.edu</u> Email: <u>wielgosz.1@osu.edu</u>

Summary and Conclusions

- With certain assumptions, a model for the ionosphere can be computed as an entire network
 - to ~1 TECU (absolute)
 - to ~0.3±0.06 TECU (5 cm ± 1 mm on L1) agreement with Double Difference estimates, subject to cycle-slip fixing
- Interpolation can yield ± 5 cm (L1) biases from nearby tracks

Summary and Conclusions (cont)

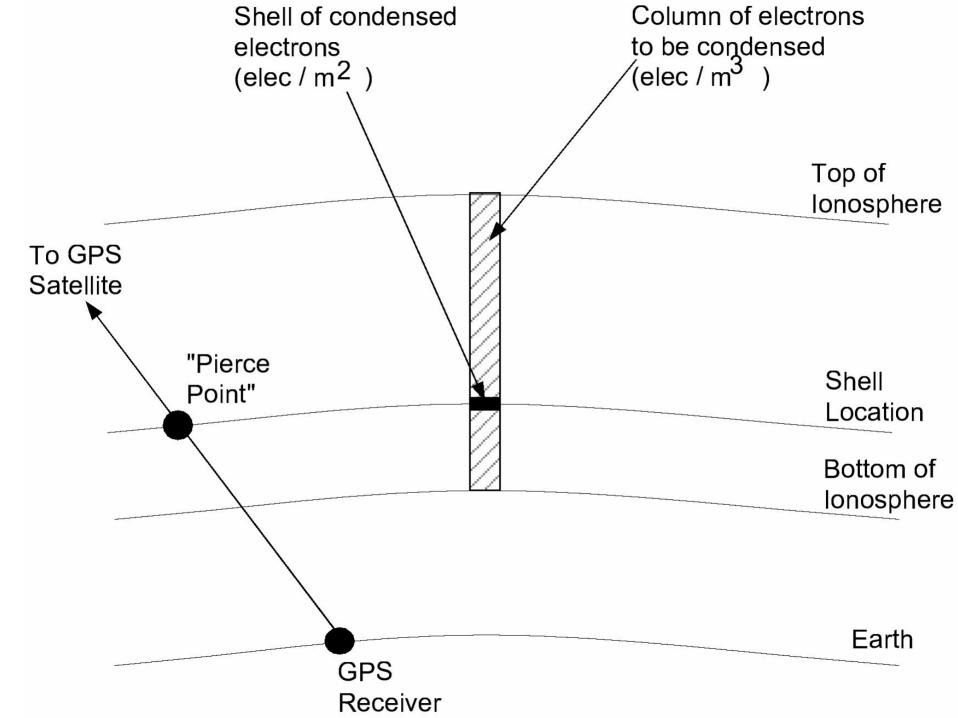
- Further sensitivity studies:
 - Removing near-horizon crossovers (nearly done)
 - Shell height
 - CORS thinning
- Independent tests forthcoming:
 - Against other ionosphere models
 - In ambiguity resolving software
- Production:
 - Daily solutions expected to begin in Fall 2004

2.10 OBSERVATION D.					
teqc 2000Ju120	CORS-ADM Acco	unt 2004	io108 05:18:0	DSUTCPGM / RUN BY / DATE	
dqua				MARKER NAME	
XXX	1000000000000			MARKER NUMBER	
CORS/NGS/NOAA	OAR/FSL			OBSERVER / AGENCY	
3735A20424		OSSI 7.19	9	REC # / TYPE / VERS	
3328A68603	TRM14532.00			ANT # / TYPE	
-395445.7142 -52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		APPROX POSITION XYZ	
0.0000	0.0000	0.0000		ANTENNA: DELTA H/E/I	
1 1				WAVELENGTH FACT L1/:	
<mark>8</mark> C1 L1	. L2 P1	P2 D1	D2 <mark>I1</mark>	# / TYPES OF OBSERV	
30.0000				INTERVAL	
Forced Modulo Deci	mation to 30 se	conds		COMMENT	
2004 1 7	' O Q	0.0000000	GPS	TIME OF FIRST OBS	
This is an IINEX f	ile, not strict	ly RINEX.		COMMENT	
The difference is	that an I1 vari	able, repre	esenting	COMMENT	
the computed Ionos	phere delay on	L1, in cycl	les of L1,	COMMENT	
has been introduce	d. This value	should gene	erally	COMMENT	
always be positive				COMMENT	
I1 was computed by	Dru Smith, NOA	A/NGS with	the following	ng COMMENT	
parameters (see D.	Smith for deta	ils):		COMMENT	
Year = 2004 Day of	Year = 007			COMMENT	
Shell Height (km)				COMMENT	
Track Cleaning Cri	teria Index	: 001		COMMENT	
Crossover Spacing		: 001		COMMENT	
Tracknet Formation	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~		COMMENT	
LSA Weighting Sche	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	: 004		COMMENT	
Flag for post-LSA		: 000	*****	COMMENT	
ang tet pere tet				END OF HEADER	
04 1 7 0 0 0	.0000000 0 9G	5G13G24G	5G17G10G 4G30		
~~	10363943.65748	8142514.0		0.00000 21696361.8444	
-4100.07840	0.00000	15.			
25107871.38340		2259556.0		0.00000 25107875.26240	
-3307.67240	0.00000	-99999.0			
		14366529.9		0.00000 21512363.50440	
-3686.29740	0.00000	-99999.		0.00000 21312363.30440	
-3000.49/40		-99999.0	000		
22062501 26640	1725025 55046	1150602 0	5004E	0 00000 2202502 02140	
23862591.76640	~~	-1150692.5		0.00000 23862597.87140	
706.65640	0.00000	24.2	278 <mark>-</mark>		
706.65640 21126131.32040	0.00000 3655026.98748	<mark>24.2</mark> 2892249.:	2 <mark>78</mark> 132 <mark>4</mark> 7		
706.65640 21126131.32040 -1809.82840	0.00000 3655026.98748 0.00000	24.2 2892249.3 <mark>9.8</mark>	278 13247 350	0.00000 21126136.6764	
706.65640 21126131.32040 -1809.82840 20301784.44540	0.00000 3655026.98748 0.00000 _5022796.20048	24.2 2892249.3 <mark>9.8</mark> -3846505.2	<mark>:78</mark> 13247 <mark>350</mark> 25347	0.00000 21126136.6764	
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000	24.2 2892249.3 9.8 -3846505.2 <mark>-999999.0</mark>	:78 13247 350 :5347 000	0.00000 21126136.6764 0.00000 20301789.52040	
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140 24034690.15640	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000 41863677.08547	24.2 2892249.3 9.8 -3846505.2 -99999.0 32692773.8	:78 13247 350 25347 000 32046	0.00000 21126136.6764 0.00000 20301789.5204	
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140 24034690.15640 -4906.23440	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000 41863677.08547 0.00000	24.2 2892249.3 9.8 -3846505.2 -99999.0 32692773.8 -99999.0	:78 13247 350 25347 300 32046 300	0.00000 21126136.6764 0.00000 20301789.5204 0.00000 24034694.4454	
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140 24034690.15640	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000 41863677.08547 0.00000	24.2 2892249.3 9.8 -3846505.2 -99999.0 32692773.8	:78 13247 350 25347 300 32046 300	0.00000 21126136.6764 0.00000 20301789.5204 0.00000 24034694.4454	
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140 24034690.15640 -4906.23440	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000 41863677.08547 0.00000	24.2 2892249.3 9.8 -3846505.2 -99999.0 32692773.8 -99999.0	278 13247 350 25347 300 32046 300 32246	0.00000 21126136.6764 0.00000 20301789.5204 0.00000 24034694.4454	
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140 24034690.15640 -4906.23440 21762273.85940	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000 41863677.08547 0.00000 -282123.29347	24.2 2892249.3 9.8 -3846505.2 -99999.0 32692773.8 -99999.0 -147989.8 16.0	278 13247 350 25347 300 32046 300 32246	0.00000 23862597.87140 0.00000 21126136.67640 0.00000 20301789.52040 0.00000 24034694.44540 0.00000 21762278.34840 0.00000 0.00000	

Contact Information

- Dr. Dru A. Smith
- 301-713-3202 x 149
- Fax: 301-713-4172
- Dru.Smith@noaa.gov

Questions?


Smith, D.A., Ionosphere from CORS, COSPAR 2004

Smith, D.A., Ionosphere from CORS, COSPAR 2004

- *Currently 400+ 24/7 receivers*
 - Dual frequency, carrier-phase
 - Multi-agency
 - Administered by NGS
 - All 50 states, Central America, others
 - Ideally suited to serve as an ionosphere monitoring network for geodetic applications in the USA

Pierce Points and Tracks

- A <u>pierce point</u> occurs at ionosphere shell for each data epoch
- Mapping pierce points without loss of lock yields a <u>track</u>
- CORS yields about 20,000 tracks every day

TECS and TECR

- TECS is the TEC value seen in the satellitereceiver direction
- TECR is the vertical TEC value at the shell
 TECS = TECR / cos z'
 - Questionable usefulness at low elevation angles

$${}^{i}R_{k} = b_{k} + {}^{i}r + c({}^{i}\delta t) + {}^{i}T + {}^{i}I_{k}(+{}^{i}m_{k}) = \lambda_{k}{}^{i}\Phi_{k}^{\text{RINEX}} \quad \text{(biased range, m, epoch "i", freq "k")}$$

$$I_{k} = -\frac{40.3}{f_{k}^{2}}TECS \quad \text{(m)}$$

$$\therefore \quad \lambda_{1}{}^{i}\Phi_{1}^{\text{RINEX}} - \lambda_{2}{}^{i}\Phi_{2}^{\text{RINEX}} = (b_{1} - b_{2}) + ({}^{i}I_{1} - {}^{i}I_{2})$$

$$\therefore \quad {}^{i}TECS = \left(\frac{1}{40.3}\right) \left(\frac{1}{f_{1}^{2}} - \frac{1}{f_{2}^{2}}\right)^{-1} \left[\lambda_{1}{}^{i}\Phi_{1}^{\text{RINEX}} - \lambda_{2}{}^{i}\Phi_{2}^{\text{RINEX}}\right]$$

$$- \left(\frac{1}{40.3}\right) \left(\frac{1}{f_{1}^{2}} - \frac{1}{f_{2}^{2}}\right)^{-1} (b_{1} - b_{2})$$

 $\therefore \quad {}^{i,j} \Delta TECS = {}^{j} TECS - {}^{i} TECS$

$$= \left(\frac{1}{40.3}\right) \left(\frac{1}{f_1^2} - \frac{1}{f_2^2}\right)^{-1} \left(\lambda_1^{i,j} \Delta \Phi_1^{\text{RINEX}} - \lambda_2^{i,j} \Delta \Phi_2^{\text{RINEX}}\right)$$

Smith, D.A., Ionosphere from CORS, COSPAR 2004

Equations

Implications of Equations

- Knowing ΔTECS:
 - Shape of "TECS vs time" curve known
 - Absolute level unknown
- Single, unknown bias per "track"

${}^{i}TECS = {}^{i}TECR / \cos^{i}z'$ ${}^{i,j}\Delta TECR = {}^{j}TECR - {}^{i}TECR$ $\therefore {}^{i,j}\Delta TECR = {}^{i,j}\Delta TECS \cos^{j}z' + {}^{i}TECS(\cos^{j}z' - \cos^{i}z')$

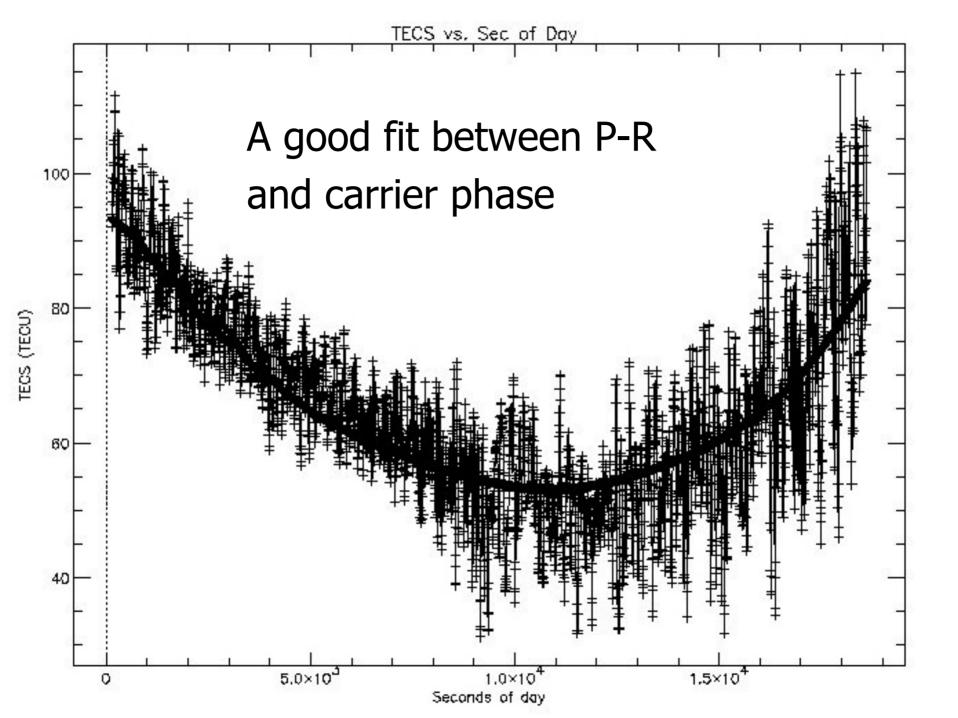
Smith, D.A., Ionosphere from CORS, COSPAR 2004

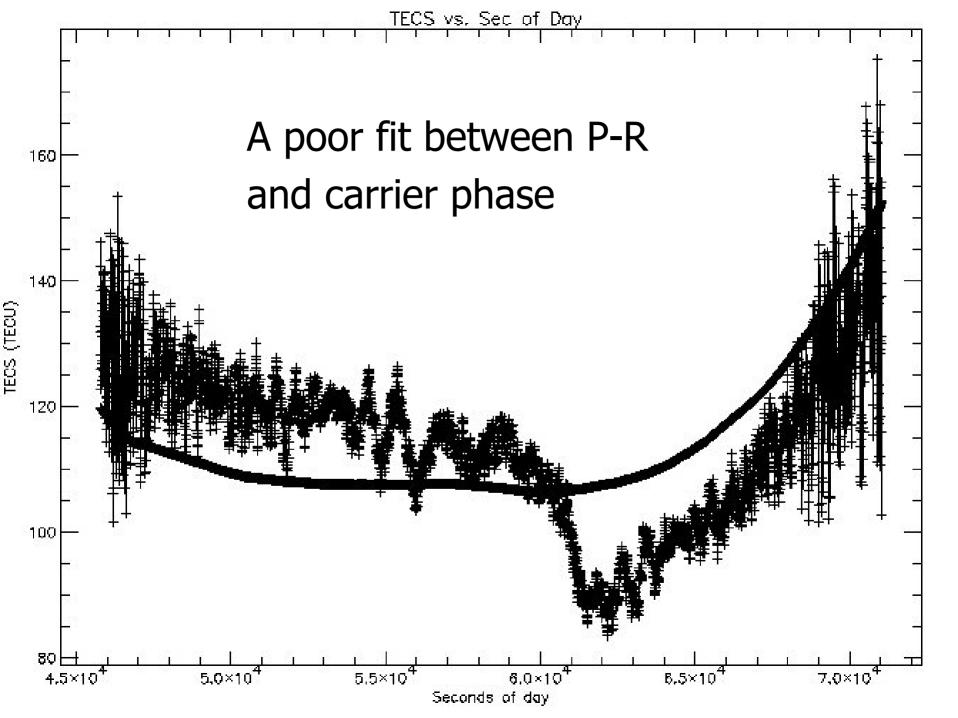
- Epoch-dependent cos z' in TECR:
 - Shape of "TECR vs time" curve is *unknown*
 - Absolute level unknown

Closed Polyg

- Altimetry or Leveling (ΔH & H-equality):
 # conditions = # vertices 1
- Ionosphere (ΔTEC<u>S</u> & TEC<u>R</u>-equality)
 # conditions = # vertices
- Any time that a closed polygon is formed on the ionosphere "shell" we have:
 - # Conditions = # Unknowns

Polygon Crossover Equations


$$\begin{bmatrix} {}^{A}_{1}\Delta TECS & \cos {}^{A}_{1}z' - {}^{A}_{3}\Delta TECS & \cos {}^{A}_{3}z' \\ {}^{B}_{1}\Delta TECS & \cos {}^{B}_{1}z' - {}^{B}_{2}\Delta TECS & \cos {}^{B}_{2}z' \\ {}^{C}_{2}\Delta TECS & \cos {}^{C}_{2}z' - {}^{C}_{3}\Delta TECS & \cos {}^{C}_{3}z' \end{bmatrix}$$
$$= \begin{bmatrix} -\cos {}^{A}_{1}z' & 0 & +\cos {}^{A}_{3}z' \\ -\cos {}^{B}_{1}z' & +\cos {}^{B}_{2}z' & 0 \\ 0 & -\cos {}^{C}_{2}z' & +\cos {}^{C}_{3}z' \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$


Smith, D.A., Ionosphere from CORS, COSPAR 2004

Polygon Crossover Equations

- The existence of the cos z' values on the RHS allows for matrix inversion
 - (as opposed to +1,0 and -1 for altimetry)
- Solvability
- Can we have redundancy?

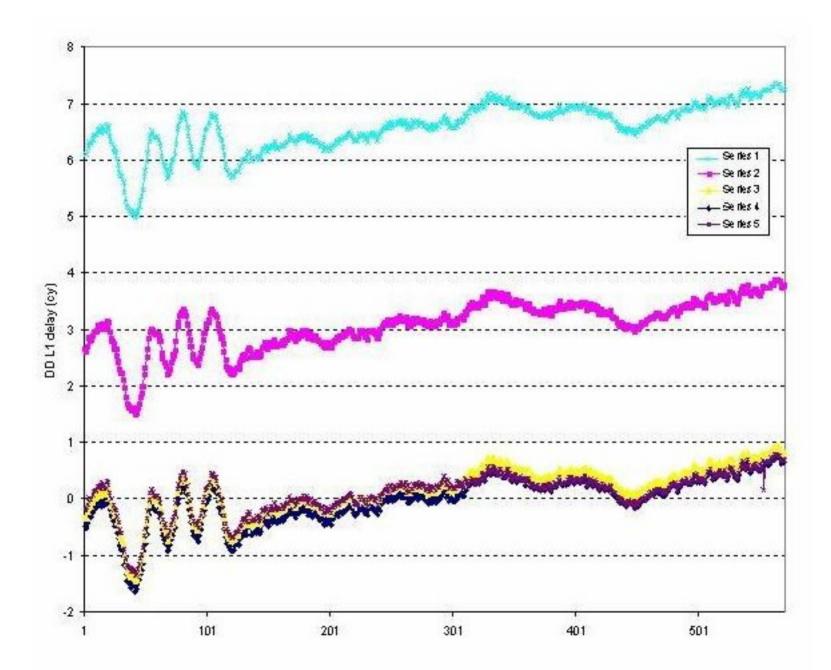
- YES

- Parameters:
 - Shell height = 300 km
 - Crossover definition: $0.1^{\circ} \ge 0.1^{\circ} \ge 1$ min
 - Cut-off angle: 10° (for data and crossovers)

Initial Tests (all contain the 4 base tracks)

- <u>Solution 1</u> (smallest tracknet possible containing the 4 base tracks)
 - 8 tracks, No polygons, PR-fit 6 of 8 tracks
- <u>Solution 2</u>
 - 10 tracks, 2 polygons, PR-fit 7 of 10 tracks
- <u>Solution 3</u>
 - 10 tracks, 2 polygons, no PR-fitting
- <u>Solution 4</u>

- 10 tracks, 2 polygons, PR-fit 1 of 10 tracks


Formal σ_{bias} estimates for first tracknet tests (in TECU)

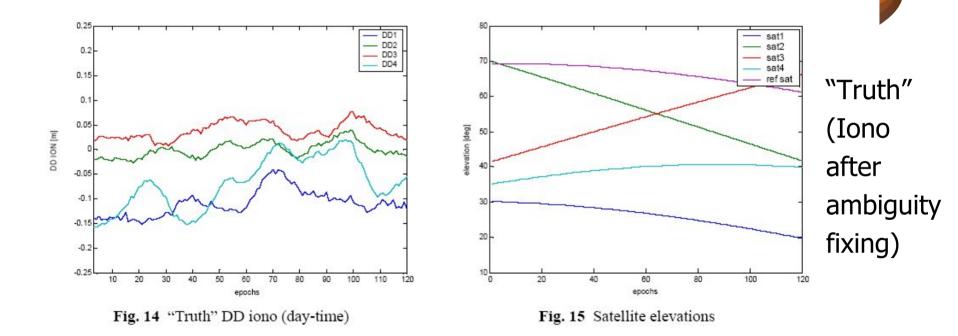
Track #	Soln 1 (PR fit to 6 of 8; no polygons)	Soln 2 (PR fit to 7 of 10; 2 polygons)	Soln 3 (No PR fit; 2 polygons)	Soln 4 (PR fit to 1 of 10; 2 polygons)
4300 (base)	3.5	2.9	0.1	1.2
4303 (base)	8.8	4.7	0.2	2.1
9484 (base)	9.3	4.6	0.2	2.0
9487 (base)	9.4	3.1	0.1	1.3
2253	13.6	5.9	0.3	2.5
10146	9.7	3.3	0.1	1.4
11416	6.5	4.9	0.2	2.0
12565	6.1	3.9	0.2	1.6
2224	-	4.3	0.2	1.7
11580	-	3.0	0.1	1.2

Smith, D.A., Ionosphere from CORS, COSPAR 2004

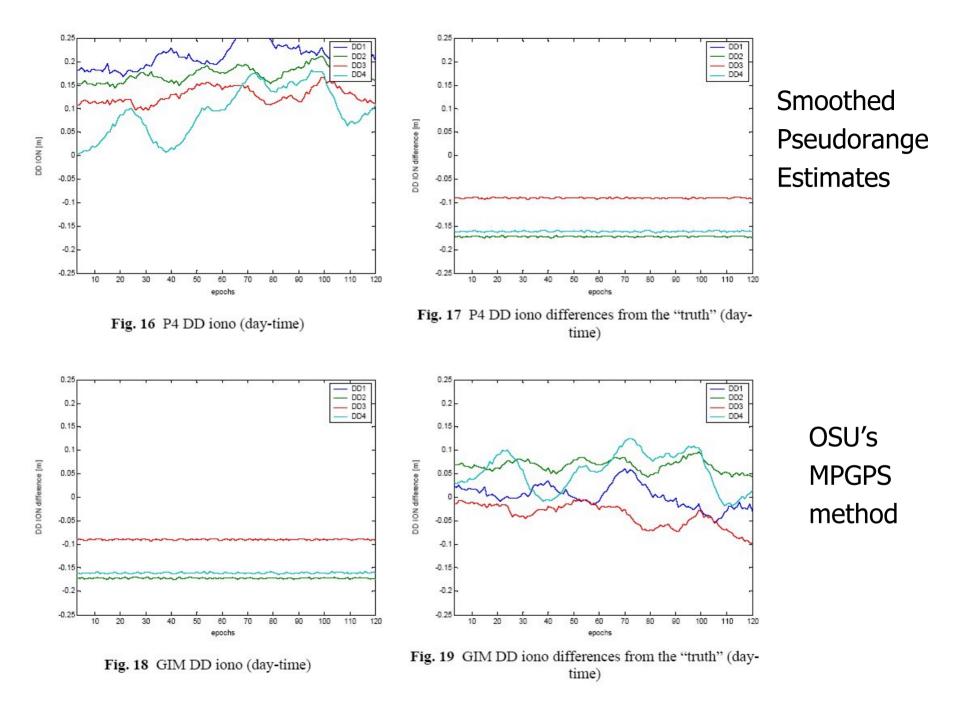
Initial Tests (cont)

- Individual ionosphere delays for each SV/CORS combo were estimated:
 - I₄₃₀₀(SV1/GODE), I₄₃₀₃(SV2/GODE), I₉₄₈₄(SV1/RED1),
 I₉₄₈₇(SV2/RED1) all estimated individually (as well as for all other tracks in the tracknet)
- Double Difference delays were then computed:
 - $I_{DD} = (I_{4300} I_{9484}) (I_{4303} I_{9487})$ computed and compared to independent estimates from NGS ambiguity resolving software

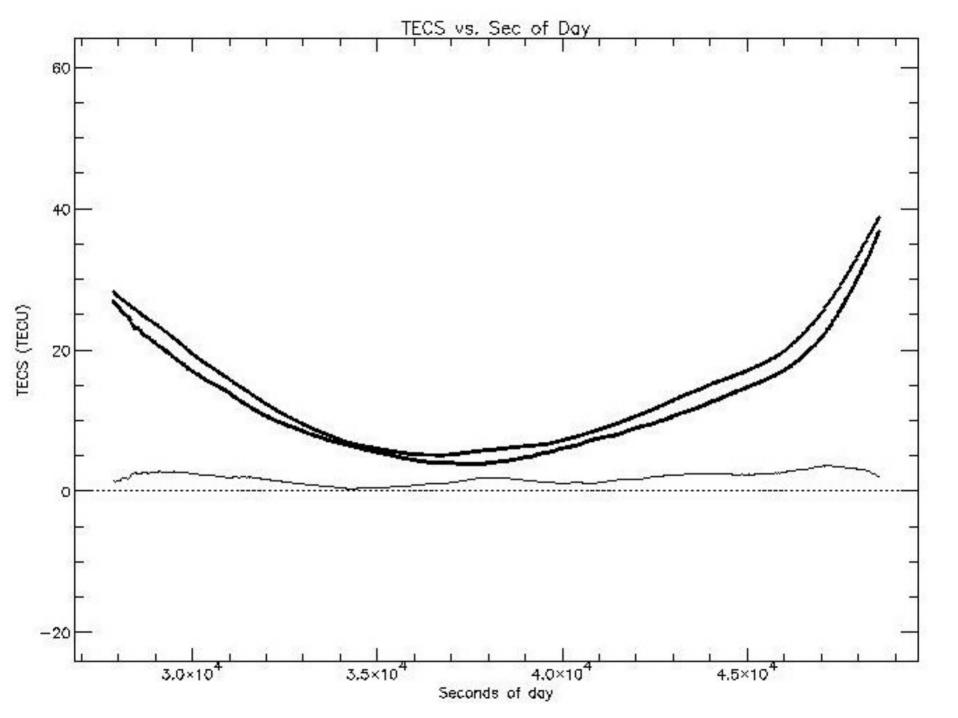
First tracknet tests

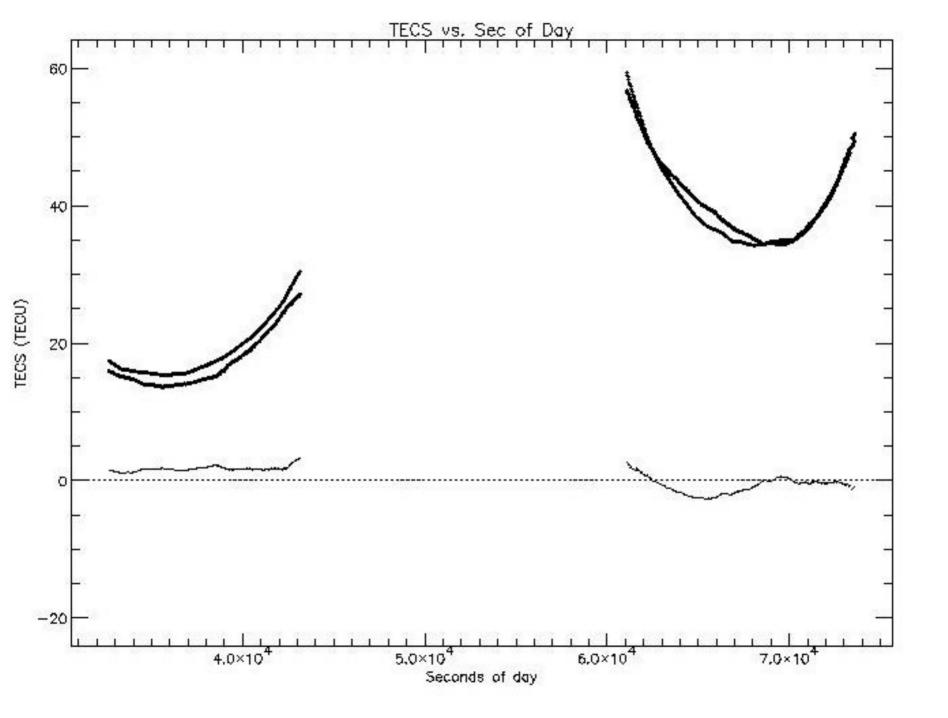

- Pseudo-range fitting tends to bias the tracknet
- Better fit to Double Difference estimated ionosphere by using just polygons and no P-R fitting

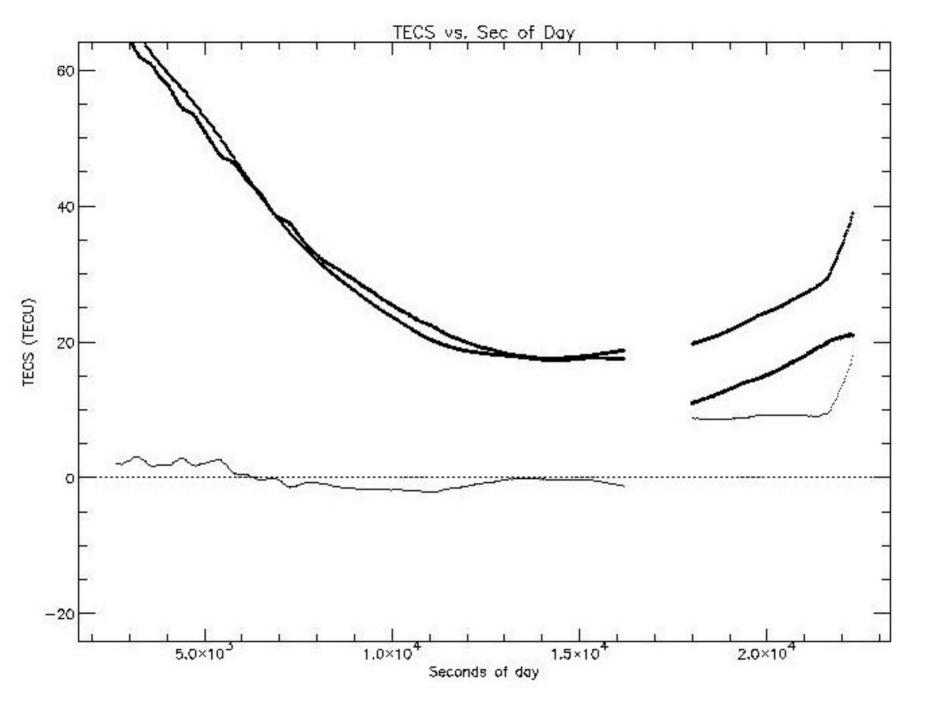
Full day solution (cont)

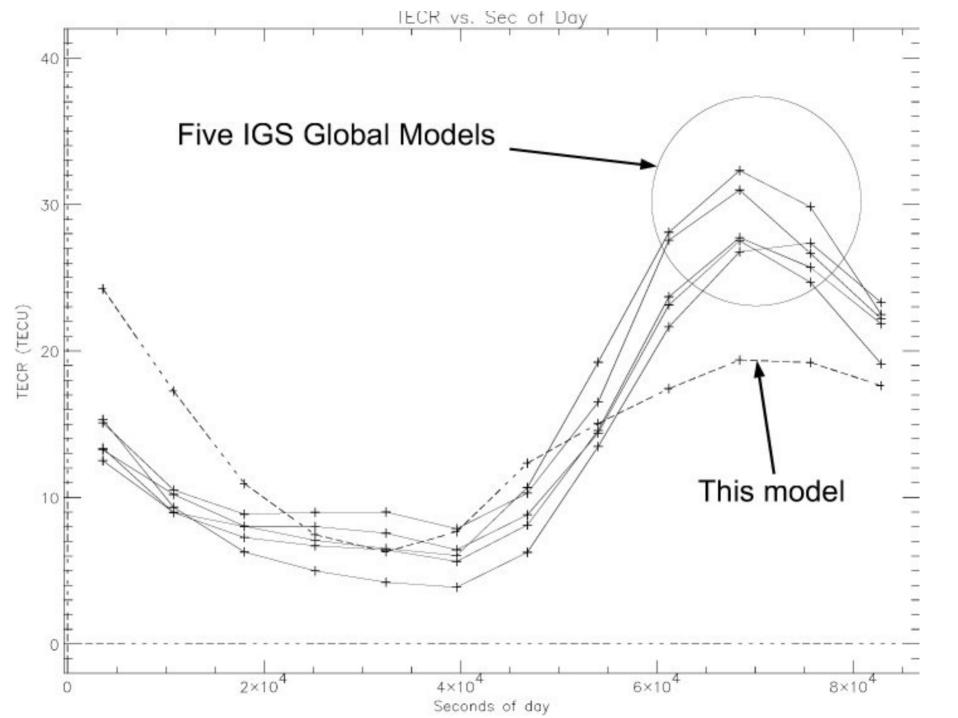

- Interpolation from tracks to grids and/or other tracks:
 - Track-to-grid-to-Track
 - Useful for <u>grid-distributed</u> Ionosphere model and animations
 - 0.00 ± 0.38 TECU (± 6 cm on L1)
 - Track-to-Track
 - Useful for <u>RINEX-distributed</u> Ionosphere model
 - 0.00 ± 0.25 TECU (± 5 cm on L1)
- Full day solution was gridded and animated

Example 2. 17:00-18:00 UT (day-time)


The "truth" DD ionospheric delays are presented in figure 14 with the corresponding satellite elevation map in figure 15. Figures 16–25 represents the derived DD ionosphere form each method and the difference from the "truth" (in pairs). The mean and standard deviation of the ionospheric residuals from the "truth" are shown in Table 2.




Smith, D.A., Ionosphere from CORS, COSPAR 2004



2.10	OBSERVATION D		FPS)	RINEX VERSION / TYPE
teqc 2000Ju120	CORS-ADM Acco	unt 2004	io108 05:18:0	DSUTCPGM / RUN BY / DATE
dqua				MARKER NAME
XXX	1000000000000			MARKER NUMBER
CORS/NGS/NOAA	OAR/FSL			OBSERVER / AGENCY
3735A20424		OSSI 7.19	9	REC # / TYPE / VERS
3328A68603	TRM14532.00			ANT # / TYPE
-395445.7142 -52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		APPROX POSITION XYZ
0.0000	0.0000	0.0000		ANTENNA: DELTA H/E/I
1 1				WAVELENGTH FACT L1/:
<mark>8</mark> C1 L1	. L2 P1	P2 D1	D2 <mark>I1</mark>	# / TYPES OF OBSERV
30.0000				INTERVAL
Forced Modulo Deci	mation to 30 se	conds		COMMENT
2004 1 7	' O Q	0.0000000	GPS	TIME OF FIRST OBS
This is an IINEX f	ile, not strict	ly RINEX.		COMMENT
The difference is	that an I1 vari	able, repre	esenting	COMMENT
the computed Ionos	phere delay on	L1, in cycl	les of L1,	COMMENT
has been introduce	d. This value	should gene	erally	COMMENT
always be positive				COMMENT
I1 was computed by	Dru Smith, NOA	A/NGS with	the following	ng COMMENT
parameters (see D.	Smith for deta	ils):		COMMENT
Year = 2004 Day of	Year = 007			COMMENT
Shell Height (km)				COMMENT
Track Cleaning Cri	teria Index	: 001		COMMENT
Crossover Spacing		: 001		COMMENT
Tracknet Formation	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~		COMMENT
LSA Weighting Sche	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	: 004		COMMENT
Flag for post-LSA		: 000	*****	COMMENT
ang tet pere tet				END OF HEADER
04 1 7 0 0 0	.0000000 0 9G	5G13G24G	5G17G10G 4G30	
~~	10363943.65748	8142514.0		0.00000 21696361.8444
-4100.07840	0.00000	15.		
25107871.38340		2259556.0		0.00000 25107875.26240
-3307.67240	0.00000	-99999.0		
		14366529.9		0.00000 21512363.50440
-3686.29740	0.00000	-99999.		0.00000 21312363.30440
-3000.49/40		-99999.0	000	
22062501 26640	1725025 55046	1150602 0	5004E	0 00000 2202502 02140
23862591.76640	~~	-1150692.5		0.00000 23862597.87140
706.65640	0.00000	24.2	278 <mark>-</mark>	
706.65640 21126131.32040	0.00000 3655026.98748	<mark>24.2</mark> 2892249.:	2 <mark>78</mark> 132 <mark>4</mark> 7	
706.65640 21126131.32040 -1809.82840	0.00000 3655026.98748 0.00000	24.2 2892249.3 <mark>9.8</mark>	278 13247 350	0.00000 21126136.6764
706.65640 21126131.32040 -1809.82840 20301784.44540	0.00000 3655026.98748 0.00000 _5022796.20048	24.2 2892249.3 <mark>9.8</mark> -3846505.2	<mark>:78</mark> 13247 <mark>350</mark> :5347	0.00000 21126136.6764
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000	24.2 2892249.3 9.8 -3846505.2 <mark>-999999.0</mark>	:78 13247 350 :5347 000	0.00000 21126136.6764 0.00000 20301789.52040
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140 24034690.15640	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000 41863677.08547	24.2 2892249.3 9.8 -3846505.2 -99999.0 32692773.8	:78 13247 350 25347 000 32046	0.00000 21126136.6764 0.00000 20301789.5204
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140 24034690.15640 -4906.23440	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000 41863677.08547 0.00000	24.2 2892249.3 9.8 -3846505.2 -99999.0 32692773.8 -99999.0	:78 13247 350 25347 300 32046 300	0.00000 21126136.6764 0.00000 20301789.5204 0.00000 24034694.4454
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140 24034690.15640	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000 41863677.08547 0.00000	24.2 2892249.3 9.8 -3846505.2 -99999.0 32692773.8	:78 13247 350 25347 300 32046 300	0.00000 21126136.6764 0.00000 20301789.5204 0.00000 24034694.4454
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140 24034690.15640 -4906.23440	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000 41863677.08547 0.00000	24.2 2892249.3 9.8 -3846505.2 -99999.0 32692773.8 -99999.0	278 13247 350 25347 300 32046 300 32246	0.00000 21126136.6764 0.00000 20301789.5204 0.00000 24034694.4454
706.65640 21126131.32040 -1809.82840 20301784.44540 -1548.39140 24034690.15640 -4906.23440 21762273.85940	0.00000 3655026.98748 0.00000 -5022796.20048 0.00000 41863677.08547 0.00000 -282123.29347	24.2 2892249.3 9.8 -3846505.2 -99999.0 32692773.8 -99999.0 -147989.8 16.0	278 13247 350 25347 300 32046 300 32246	0.00000 23862597.87140 0.00000 21126136.67640 0.00000 20301789.52040 0.00000 24034694.44540 0.00000 21762278.34840 0.00000 0.00000

