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The effect of ephemeris errors on ZTD (in PPP)

Linearized equation for a carrier phase observable L; (scaled to a distance) can
be written as

Ly = |Rjy| + ADj + ACL+ AS} + AN + ¢} o)
where |F| = |X' - X;| is a geometrical distance (in vacuum) between receiver k
and satellite i, AD} is a sum of the distance dependent biases (receiver and
satellite position corrections, delays due to the ionosphere and troposphere),
ACj is a sum of the clock related biases (satellite and receiver clock biases,
relativistic corrections), ASj is a sum of the satellite and station dependent
biases (phase center offsets and variations, multipath), A is wavelength, Nj is
an initial ambiguity of the full cycles in the range and ¢ is a noise.
We focus on a simplified model considering only a satellite position bias (AXY)
and a tropospheric path delay (A7;) terms from a sum of distance dependent
biases ., .
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Other biases are considered accurately provided in advance, modeled or ne-
glected in (near) real-time analysis. Additionally, the station coordinates are
usually kept fixed on a long-term estimated position (we assume AX, = 0) and
the ionosphere bias (A7}) can be eliminated for its significant first order effect.
The precise satellite orbits are best estimated from a global network, while
preferably kept fixed in a regional analysis, thus we consider AX' as a priori
introduced error (sX'). In a simplest way, the troposphere parameters are
estimated as the time-dependent zenith total delays (ZTD) above each station
of the network
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where a zenith dependent mapping function m(z;) we approximated by cos(z}).
Because of their different magnitude, we are interested to express the orbit
errors in a satellite coordinate system (radial, along-track and cross-track;
RAC). Using a transformation

0X' = R.(N) - Ry(¢") - 6X e (4)

we distinct only two components: radial and in orbit tangential plane (along-
track + cross-track). Hence, we do not need to consider the satellite track
orientation and we will investigate only the marginal errors. The equation for
our simplified model is

Ly = |Rigl + @ - Ri(X) - Ry(") 6K e + ZTDy +my(zh) - ZT Dy + A - Nj + €} (5)

1
cos(z4)
where ¢ represents a unit vector pointing from station & to satellite i. The
error from the orbit prediction (5X},.) is usually significantly larger than the
carrier phase observable noise ¢. The orbit errors changes rather slowly (in
hours) and its 3D representation is projected into the pseudorange (1D). A
significant portion of this error can be mapped into the estimated ZTD if not
previously absorbed by the ambiguities (or clock corrections in PPP).

sz For a priori orbit errors compensated mostly by ZTDs
we can write
L 5zrDs ~ 0 ©
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Either receiver position nor satellite position or velic-

ity have to be known if we express the impact of the

satellite radial and tangential errors only as a function

of zenith distance to the satellite. Following the sketch in figure we can express

RN - Ry(9) - 0K e = cos(Wly) - 6 X g +sin(W) - 6X7,, )
where
Wy = arcsin(sin(z}) * Ra/R') ®)
and we derive the plot for the impact of the radial and tangential orbit errors
to the range 4L, and their potential mapping into the z7D,.

Zero-diff: Impact of radialitangent orbit N ) -
ero-dit: mpact of radialiangent BT SO Maximal impact from the radial error is in

zenith (impact 1.0). For satellite in horizon
it only slightly decreases to 0.97 for error in
sLy and to 0.0 for 62TD,. The impact of the
tangential errors is much smaller with max-
imum 0.13 at z} = 45deg and minimum 0.0 when
tangential error is perpendicular to AX]. For
example, 10¢m tangential or 1em radial error
orbit can cause max. 1.3em or Loem in ZTD, respectively.
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Motivation

The quality of the orbits predicted for real-time plays a crutial role in the 'GPS
meteorology’ — precise troposphere delay estimation for the numerical weather
prediction. Two approaches are commonly used: a) precise point positioning
(PPP) using undifference observables and b) network solution using double-
difference observables, both very different in the requirements for the orbit
accuracy.

Since 2000, the International GNSS Service (IGS) provides the ultra-rapid
orbits, which are updated every 6 hours today. In (near) real-time, the use
of 3-10h prediction is thus necessary before getting new IGS product.

Is a quality of current orbit prediction sufficient to 'GPS-meteorology’ applica-
tion 7 We monitor the quality of the orbit prediction performance and relevance
of the accuracy code at http://www.pecny.cz (GNSS — GPS-orbits).

The effect in the difference observables
Commonly used double-difference phase carier observations are written

L = Liy— Liy = (L, - L) - (L} - L}) (9)
This approach cancels a significant portion of the common biases at two re-
ceivers or two satellites. Some biases are cancelled perfectly (e.g. satellite
clocks), others are more or less significantly reduced depending on baseline
length (e.g. satellite position errors, troposphere path delays).

We investigate here an orbit error impact from a single satellite and thus we
can use solely single-difference observations. According to (5) and (9) they
are written as

Ly = | By — |R)| + (& — &) - 6X' + my(z}) - ZT Dy — my(=}) - ZTD; (10)
Any orbit error is simply projected into the single-difference observation by a
difference in the unit vectors (¢, —¢j). If it is compensated by the difference of
the estimated ZTDs (also in pseudorange projection), then
(& —é}) - R-(N) - Ry(¢")6 X e+ my(2}) - 6ZT Dy —my(2) - 62TDy =~ 0 (11)
We need to know the baseline length, the zenith distance of the satellite at
one of the stations and the direction of the satellite with respect to baseline.
This is a bit more complicated case to generalize and we will thus study its
two marginal cases which both meets in a zenith above a mid of the baseline:
« cqual azimuths - satellite is in the same azimuth like the second station
« equal zeniths - zenith distances to the satellite are equal at both stations

We do not need again to know a satellite velocity vector
if we distiguish the ephemeris errors only in radial and
tangential direction. According to (7), (8) and (10)
we get a relation for the impact

(@ = @) - Ro(N) - Ry() - 6 X e (12)

(cos(Wy) - 0X fpyq + sin(Wy) - 6XF,,.) — (cos(Wip) - 0X fpyg + sin(W) - 0X7,)

which is evaluated for two cases above and baseline S,; = 1000km in the plots.
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In case of equal zeniths (), = zj;, R, = R}, ¥, = ¥};) the impact is always cancelled
out for the radial orbit error. Tangential orbit error has maximal impact when
the satellite is above baseline and the error is parallel with baseline (+0.027 for
ZTD,, ZTDg). It is cancelled out when the error is perpendicular to baseline and
reduced to the horizon. In case of equal azimuths the impact of the radial orbit
error is maximal at =) = 38 deg (+0.0023 for ZTD,, ZTDy respectively). Tangential
error impact is the largest again above the baseline (the same as in equal zenith
case) and slightly faster reduces to the horizon. The impact is reduced with
decreasing the baseline length (approx. half for baseline 500km).

Simulation in network analysis

We used a network solution processed with
the Bernese GPS software to simulate the
Radial/Along-track/Cross-track (RAC) or-
bit errors. The ZTDs were estimated us-
ing 'star’ and ’'circle’ networks with the longest baseline of
1300km ('star’). The precise IGS final orbits were used for data
pre-processing, ambiguity fixing, for estimating the reference
coordinates and ZTDs. The synthetic biases (lcm—100cm) were
introduced into the IGS final orbits successively for GO1, G03,
GO5 and G25 satellite in the RAC components independently.
Two ZTD solutions were provided and compared to the ref-
erence ZTDs — ambiguity fixed (top Figs) and ambiguity free
(bottom Figs). The ZTD map differences are plotted for
radial, along-track and cross-track components in 3-hour in-
terval when satellite is above the region (Figs below).
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Summary Radial| Tangent
The table shows the re- |PPP 1cm 7 cm
quirements for the radial N k' I 1
and tangential orbit posi- etworl 217 cm 19 cm

tions to ensure the ZTD contamination less than iem when
not absorbed by the ambiguities or clocks. 1000km baselines are
considered in the network (the effects will reduce to one-half
if 500km). Also the ambiguities can absorb a significant por-
tion of the relative ZTD values. General requirements setup
is difficult. The satellite constellation, the network configu-
ration and especially the pre-processing (solving for ambigu-
ities, clocks, coordinates) altogether differentiate the situa-
tion in which the orbit errors can be absorbed into different
model constituents. The most inaccurate orbit component
(along-track) causes the problem in network ZTD solution
when satellite is flying in the baseline direction. The radial
component is usually crucial for PPP ZTD when satellite is
near zenith, while the along-track component cause maximal
error in elevation of 4idey if satellite is flying to or from the
station. It is necessary to distinguish GPS Block IIR and IIA
satellites, due to a different performance in prediction when
eclipsing. The orbit prediction is fastly degraded for the Block
A satellites (44%) and can not be often predicted enough
accurately even for a few hours. Also the accuracy code is
often underestimated for old satellites in eclipsing periods.

Monitoring the quality of the IGS ultra-rapids

The overall accuracy of the precise IGS ultra-rapid orbit product is usually
presented by means of weighted rms. We present a detail evaluation with
respect to each individual satellite and with respect to every hour of 0-24h
interval prediction. The aim is to evaluate independently the individual satellite
orbit quality and assigned accuracy codes.

The IGS ultra-rapid orbits are epoch by epoch compared to the IGS rapid
product (3 rotations estimated). From the differences, which are stored in
a database we generate plots of the dependency of the orbit accuracy with
respect to the prediction interval (Fig 1), the evolution of the individual orbits
in time-series (Fig 2), to monitor the real orbit differences together with the
triple of expected error assigned to satellite (3+24¢*), Fig 4. Figure 3 shows
1D RMS from the IGS ultra-rapid comparison to IGS rapids provided by the
IGS ACC, which includes the eclipsing periods identifying prediction problems.
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Figure 1
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