VI. Theoretical Fundamentals of Airborne Gradiometry

- Gravity Gradients Review
- Why Gradiometry?
- Gradiometry equation
- Instrumentation \& Existing Systems (non-inclusive)
- Rudimentary Error Analysis

Gravitational Quantities in Cartesian Coordinates

local coordinate frame

- gravitational potential: $V\left(x_{1}, x_{2}, x_{3}\right) \quad$ (0-order tensor)

- gravitation vector: $\boldsymbol{g}=\nabla V=\left(\begin{array}{l}g_{1} \\ g_{2} \\ g_{3}\end{array}\right)=\left(\begin{array}{l}\frac{\partial V}{\partial x_{1}} \\ \frac{\partial V}{\partial x_{2}} \\ \frac{\partial V}{\partial x_{3}}\end{array}\right)$
(1st-order tensor)
- gravitational gradient tensor: $\Gamma=\nabla \nabla^{\mathrm{T}} V=\nabla \boldsymbol{g}^{\mathrm{T}}$ (2nd-order tensor)

Gravitational Gradient Tensor

$$
\boldsymbol{\Gamma}=\nabla \nabla^{\mathrm{T}} V=\nabla \boldsymbol{g}^{\mathrm{T}}=\left(\begin{array}{l}
\frac{\partial}{\partial x_{1}} \\
\frac{\partial}{\partial x_{2}} \\
\frac{\partial}{\partial x_{3}}
\end{array}\right)\left(\begin{array}{lll}
g_{1} & g_{2} & g_{3}
\end{array}\right)=\left(\begin{array}{lll}
\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{3}}{\partial x_{1}} \\
\frac{\partial g_{1}}{\partial x_{2}} & \frac{\partial g_{2}}{\partial x_{2}} & \frac{\partial g_{3}}{\partial x_{2}} \\
\frac{\partial g_{1}}{\partial x_{3}} & \frac{\partial g_{2}}{\partial x_{3}} & \frac{\partial g_{3}}{\partial x_{3}}
\end{array}\right)=\left(\begin{array}{lll}
\Gamma_{11} & \Gamma_{12} & \Gamma_{13} \\
\Gamma_{21} & \Gamma_{22} & \Gamma_{23} \\
\Gamma_{31} & \Gamma_{23} & \Gamma_{33}
\end{array}\right)
$$

- In-line gradients: $\Gamma_{j j}=\frac{\partial^{2} V}{\partial x_{j}^{2}}=\frac{\partial g_{j}}{\partial x_{j}} \quad$ • Cross gradients: $\Gamma_{j k}=\frac{\partial^{2} V}{\partial x_{j} \partial x_{k}}=\frac{\partial g_{k}}{\partial x_{j}}$
- V is twice continuously differentiable (continuous density) $\Rightarrow \Gamma$ is symmetric

$$
\frac{\partial^{2} V}{\partial x_{k} \partial x_{j}}=\frac{\partial^{2} V}{\partial x_{j} \partial x_{k}} \quad\left(\Gamma_{k j}=\Gamma_{j k}\right)
$$

- Poisson's equation \Rightarrow in-line gradients are linearly dependent; e.g.

$$
\Gamma_{33}=-\Gamma_{11}-\Gamma_{22}-4 \pi G \rho
$$

Γ has 5 independent elements

Fractional Contributions by Depth of Source

Earth Radius:
$\sim 6371 \mathrm{~km}$
crust: 0 -~20 km
upper mantle: ~20 km - $\mathbf{4 0 0} \mathbf{~ k m}$
transition/lower mantle: $400 \mathbf{k m}$ - 2890 km
outer core: $\mathbf{2 8 9 0} \mathbf{~ k m} \mathbf{- 5 1 5 0} \mathbf{~ k m}$
inner core: $\mathbf{5 1 5 0} \mathbf{~ k m}-\mathbf{6 3 7 0} \mathbf{~ k m}$

after Jordan (1978)

Global Degree Variances

- Disturbing potential:

$$
T(\theta, \lambda, r)=\frac{G M}{a} \sum_{n=2}^{\infty} \sum_{m=-n}^{n}\left(\frac{a}{r}\right)^{n+1} C_{n, m} \bar{Y}_{n, m}(\theta, \lambda)
$$

- root-degree-variances:

- geoid undulation

$$
\sigma_{n}(N)=a \sqrt{\sum_{m=-n}^{n} C_{n, m}^{2}}
$$

- gravity disturbance

$$
\sigma_{n}(\delta g)=\frac{G M}{a^{2}}(n+1) \sqrt{\sum_{m=n}^{n} C_{n, m}^{2}}
$$

- radial gravitational gradient

$$
\sigma_{n}\left(\delta \Gamma_{33}\right)=\frac{G M}{a^{3}}(n+1)(n+2) \sqrt{\sum_{m=-n}^{n} C_{n, m}^{2}}
$$

Upward Attenuation vs. High-Frequency Enhancement

- Gravitational gradient attenuates as r^{-3}, gravitation as r^{-2}
- upward continuation frequency response: $\begin{aligned} e^{-2 \pi \overline{f h}} & \bar{f}\end{aligned}=\sqrt{f_{1}^{2}+f_{2}^{2}}$
- Gradient is more sensitive to high spatial frequencies
- derivative response: $(2 \pi \bar{f})^{q}$ gravitation $\Rightarrow q=1$ gradient $\Rightarrow q=2$
- No attenuation at \bar{f}, if

$$
\underset{\longrightarrow \text { takes care of units }}{R^{q}(2 \pi \bar{f})^{q} e^{-2 \pi \overline{f h}} \geq 1}
$$

- For example, at $h=500 \mathrm{~m}$
- gravimeter resolves wavelengths $>\mathbf{2 5 0} \mathbf{m}$

- gradiometer resolves wavelengths $\boldsymbol{>} \mathbf{1 2 5} \mathbf{~ m}$ frequency $[\mathrm{cy} / \mathrm{m}]$

Curvature of Equipotential Surface

- Equipotential surface: Surface on which $V=V_{0}$
- Consider normal section, s
- Formula for curvature of arc, s :

$$
\kappa_{s}=\left|\frac{d^{2} z}{d s^{2}}\right|\left(1+\frac{d z}{d s}\right)^{-3 / 2}
$$

- It can be shown* that the curvature is It can be shown* that the curvature is
proportional to the gravitational gradient: $\quad \kappa_{s}=\frac{1}{g}\left|\frac{d^{2} V}{d s^{2}}\right| g$ is gravitation magnitude
- Radius of curvature of arc, s : $\rho=\frac{1}{\kappa}$
- The two principal radii of curvature, ρ_{1} and ρ_{2}, represent the minimum and the maximum curvatures (along ares that are perpendicular to each other)

Differential Curvature

- Differential curvature of equipotential (level) surface

$$
\Gamma_{C}=g_{3}\left(\frac{1}{\rho_{2^{\prime}}}-\frac{1}{\rho_{1^{\prime}}}\right)=\sqrt{\left(2 \Gamma_{12}\right)^{2}+\left(\Gamma_{22}-\Gamma_{11}\right)^{2}}
$$

- Direction of minimum curvature

$$
\alpha_{c}=\frac{1}{2} \tan ^{-1} \frac{-2 \Gamma_{12}}{\Gamma_{22}-\Gamma_{11}}
$$

$-\alpha_{c}$ is the azimuth of the direction of minimum curvature
principal radii
of curvature

- If $\alpha_{c}=0$, coordinate axes, x_{1} and x_{2}, coincide with the directions of minimum and maximum curvature; and $\Gamma_{12}=0$
- Γ_{C} is particularly suited to map linear features of the mass density structure

Geography and Major Faults in Wichita Uplift Area
 - Green outline is location of EGM2008 map

EGM2008* Bouguer Anomalies

- Bouguer anomalies roughly indicate major faults
*Pavlis et al. 2012

EGM2008 Field Curvature Magnitude

$$
\Gamma_{C}=\sqrt{\left(\Gamma_{22}-\Gamma_{11}\right)^{2}+\left(2 \Gamma_{12}\right)^{2}}
$$

- Note enhanced details of linear features!

Moving-Base Gravity Gradiometers - A Brief History

- Torsion balances were replaced after 1938 by highly accurate and rapidmeasurement gravimeters for geophysical exploration and geodetic applications
- 1960s through 1980s saw development of gravitational gradiometers specifically for moving-base platforms
- gradiometers are not sensitive to linear accelerations
- NASA, U.S. DoD were the main sponsors
- In particular, space-borne gradiometers were proposed for gravitational mapping of planets and moons.
- a key contender for an Earth-orbiting gravitational mapper was a gradiometer
- GOCE (2009-2013) was the first (and only) space-borne gradiometer
- Ship-borne and airborne systems developed slowly, in competition with (cheaper) gravimeter/GPS systems
- Successful demonstration of airborne gradiometer in 1980 s spurred heavy investment by geophysical exploration companies
- e.g., Bell Geospace is one of today's leaders

Moving-Base Gradiometer Couples Gravitational Gradient and Angular Rates

Gravity Gradiometry Observation Model

- Recall lever-arm equation for acceleration

$$
\ddot{\boldsymbol{x}}_{\text {accel }}^{i}=\ddot{\boldsymbol{x}}_{\text {body }}^{i}+\ddot{\boldsymbol{b}}^{i}
$$

- where $\quad \ddot{\boldsymbol{b}}^{i}=\ddot{\mathbf{C}}_{b}^{i} \boldsymbol{b}^{b}=\mathbf{C}_{b}^{i}\left(\dot{\boldsymbol{\Omega}}_{i b}^{b}+\boldsymbol{\Omega}_{i b}^{b} \boldsymbol{\Omega}_{i b}^{b}\right) \boldsymbol{b}^{b}$

$$
\ddot{\boldsymbol{x}}^{i}=\boldsymbol{a}^{i}+\boldsymbol{g}^{i}
$$

- Inertial accelerations in b-frame

$$
\boldsymbol{a}_{\text {accel }}^{b}=\boldsymbol{a}_{\text {body }}^{b}+\left(\boldsymbol{g}_{\text {body }}^{b}-\boldsymbol{g}_{\text {accel }}^{b}\right)+\dot{\boldsymbol{\Omega}}_{i j}^{b} \boldsymbol{b}^{b}+\boldsymbol{\Omega}_{i b}^{b} \mathbf{\Omega}_{i b}^{b} \boldsymbol{b}^{b}
$$

- Differentiate with respect to \boldsymbol{b}^{b}

Methods to Isolate Gravitational Gradients

- General model in the body frame:
$\left(\begin{array}{ccc}\frac{\partial a_{1}}{\partial x_{1}} & \frac{\partial a_{2}}{\partial x_{1}} & \frac{\partial a_{3}}{\partial x_{1}}\end{array}\right)$

$$
\left.\begin{array}{lll}
\overline{\partial x_{1}} & \overline{\partial x_{1}} & \overline{\partial x_{1}} \\
\frac{\partial a_{1}}{\partial x_{2}} & \frac{\partial a_{2}}{\partial x_{2}} & \frac{\partial a_{3}}{\partial x_{2}} \\
\partial a_{1} & \partial a_{2} & \partial a_{3}
\end{array}\right)=-\left(\begin{array}{ccc}
\Gamma_{11} & \Gamma_{12} & \Gamma_{13} \\
\Gamma_{21} & \Gamma_{22} & \Gamma_{23} \\
\Gamma_{31} & \Gamma_{32} & \Gamma_{33}
\end{array}\right)+\left(\begin{array}{ccc}
0 & -\dot{\omega}_{3} & \dot{\omega}_{2} \\
\dot{\omega}_{3} & 0 & -\dot{\omega}_{1} \\
-\dot{\omega}_{2} & \dot{\omega}_{1} & 0
\end{array}\right)-\left(\begin{array}{ccc}
\omega_{2}^{2}+\omega_{3}^{2} & -\omega_{1} \omega_{2} & -\omega_{1} \omega_{3} \\
-\omega_{2} \omega_{1} & \omega_{3}^{2}+\omega_{1}^{2} & -\omega_{2} \omega_{3} \\
-\omega_{3} \omega_{1} & -\omega_{3} \omega_{2} & \omega_{1}^{2}+\omega_{2}^{2}
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
\frac{\partial a_{1}}{\partial x_{3}} & \frac{\partial a_{2}}{\partial x_{3}} & \frac{\partial a_{3}}{\partial x_{3}}
\end{array}\right)
$$

- Method 1: use accurate gyros to measure the angular rates, ω_{j}, or to stabilize the gradiometer platform
- critical for partial tensor gradiometers and FTGs that are not true full tensor gradiometers.
- Method 2: use the skew-symmetry and symmetry of the righthand side matrices:

$$
\begin{aligned}
& \text { - for } j, k, \ell=1,2,3 \\
& \left.\frac{1}{2}\left(\frac{\partial a_{j}}{\partial x_{k}}-\frac{\partial a_{k}}{\partial x_{j}}\right)=\frac{d}{d t} \omega_{\ell}\right] \longrightarrow \int_{\substack{4 \\
\text { initial } \omega_{\ell}}}^{\longrightarrow} \omega_{\ell} \longrightarrow \omega_{j} \omega_{k}-\frac{1}{2}\left(\frac{\partial a_{k}}{\partial x_{j}}+\frac{\partial a_{j}}{\partial x_{k}}\right)=\Gamma_{j k}
\end{aligned}
$$

Bell Aerospace / Lockheed Martin Gradiometer

Gravity Gradiometer Instrument (GGI) rotating sensor disk

- Data are differential curvature components

$$
\Gamma_{22}-\Gamma_{11} \quad \Gamma_{12}
$$

- They are modulated at twice the rotation rate, Ω, of the sensor disk.
- many errors modulate at once the rotation rate and can be eliminated in the demodulation of the output

$$
a_{1}(t)+a_{2}(t)-\left(a_{3}(t)+a_{4}(t)\right)=2 r\left(\Gamma_{22}-\Gamma_{11}\right) \sin 2 \Omega t+4 r \Gamma_{12} \cos 2 \Omega t
$$

- Four-accelerometer version was used for DMA/Air Force Gravity Gradiometer Survey System (GGSS) in 1980s
- Also used by Navy and still by Bell Geospace in their FTG system

Bell Aerospace GGSS

GGI disk and electronics

GGI unit

"Umbrella" configuration of three (3) GGIs on a stabilized platform

Gravity Gradiometer Survey System (GGSS)

all pictures: Bell Aerospace GGSS Proposal

Bell Aerospace GGSS (continued)

- Designed for ground-vehicle and airborne deployment

(Jekeli 1988)
- Tests in 1980's demonstrated first airborne gradiometer system
- Accuracy of about 3 mgal in vertical gravity disturbance, 4-6 mgal in horizontal components in airborne case (Jekeli 1993)

Bell Aerospace GGSS (continued)

- Calibration for self-gradients: gradients due to near-field mass of aircraft
- these are not constant since gradiometer system is mounted on a stabilized platform, while the aircraft pitches and rolls
- determine sensor output as airplane rolls and pitches statically (no changing Earth gravitational gradient sources)

Further Developments by Lockheed Martin

- Two sets of 4 accelerometers on the rotating platform; one rotated 45° from the other

accelerometer platform of Gravity Gradiometer Instrument (GGI)
- add and subtract accelerometer outputs in sets A and B :

$$
\begin{aligned}
& \mathrm{A} 1(t)+\mathrm{A} 2(t)-(\mathrm{A} 3(t)+\mathrm{A} 4(t))= \\
& \quad 2 r\left(\Gamma_{22}-\Gamma_{11}\right) \sin 2 \omega t+4 r \Gamma_{12} \cos 2 \omega t \\
& \mathrm{~B} 1(t)+\mathrm{B} 2(t)-(\mathrm{B} 3(t)+\mathrm{B} 4(t))= \\
& \quad 2 r\left(\Gamma_{22}-\Gamma_{11}\right) \cos 2 \omega t-4 r \Gamma_{12} \sin 2 \omega t
\end{aligned}
$$

- Single-axis instrument yields two curvature components
$-2 \times$ accelerometers $=>$ doubles the signal amplitude (both A and B sets yield the curvature components upon demodulation)
- Full-tensor gradiometer still needs at least 3 such GGIs

Airborne Gradiometry - BHP Falcon ${ }^{\text {TM }}$ (Fugro ...)

Instrumentation

Cessna Grand Caravan

- Airborne Gravity Gradiometer (AGG)
- Lockheed Martin instrument
- single GGI on inertially stabilized platform
- est. airborne precision $<10 \mathrm{E} / \sqrt{ } \mathrm{Hz}$

Eurocopter AS-350 B3

Airborne Gradiometry - Bell Geospace FTG

- Full tensor gradiometer (FTG)

- Lockheed Martin instrument
- This is essentially the GGSS (Bell Aerospace)
- Umbrella configuration of GGIs mounted on inertially stabilized platform
- est. airborne accuracy $<10 \mathrm{E} / \sqrt{ } \mathrm{Hz}$

Murphy (2004)
Cessna Grand Caravan
 airborne

Other Gradiometers

- Superconducting gradiometer (H.J. Paik, U. Maryland)
- GOCE (Gravity Field and Ocean Circulation Explorer)
three-axis gradiometer

(Paik 2004)

- Gedex Airborne Gravity Gradiometer (AGG)
- Cold-atom, interferometer (McGuirk 2001)

Ears move in
Bars move in
opposite Bars move
opposite
direction in direction in
response to response to
gravity grad

Rotation of $3 \times 10 \cdot 12$ displacement of $\mathrm{x}=1 \times 10^{-13}$ metres - which is what we
(Tryggvason et al. 2004)

Gradiometer System Level Errors

- Gradiometer must detect very small differential gravitation signal within a large-amplitude acceleration environment
- 1 E accuracy for 0.1 m baseline implies $<\mathbf{1 0}^{-11} \mathbf{~ m} / \mathrm{s}^{\mathbf{2}}$ accuracy in acceleration
- For gradiometers based on differential accelerometers, scale factor stability and common mode rejection are of highest importance
- Scale factor errors: accelerometers are not perfectly matched
- Alignment errors: sensitive axes of accelerometers are not parallel
- Asymmetry of configuration: measurement point is not center of mass of accelerometer pair
- Self-gradients: if system is on a stabilized platform, rotation of vehicle about the platform changes the gradient field due to vehicle itself (also changing fuel levels may alter the field significantly)

Special electronic or mechanical devices or procedures are used to eliminate or calibrate these errors

- induce known dynamics such as rotation or with shakers

Requires calibration of self gradients for different attitudes of vehicle with respect to platform

Errors in Derived Gravitational Gradients

- Gravitational gradients in body frame assuming true FTG

$$
\boldsymbol{\Gamma}^{b}=-\mathbf{B}^{b}+\boldsymbol{\Omega}_{i b}^{b} \mathbf{\Omega}_{i b}^{b} \quad \mathbf{B}^{b}=\frac{1}{2}\left(\frac{\delta \boldsymbol{a}^{b}}{\delta \boldsymbol{b}^{b}}+\left(\frac{\delta \boldsymbol{a}^{b}}{\delta \boldsymbol{b}^{b}}\right)^{\mathrm{T}}\right)
$$

- Gravitational gradients in n-frame

$$
\boldsymbol{\Gamma}^{n}=-\mathbf{C}_{b}^{n}\left(\mathbf{B}^{b}-\boldsymbol{\Omega}_{i b}^{b} \mathbf{\Omega}_{i b}^{b}\right) \mathbf{C}_{n}^{b}
$$

- Errors represented by linear perturbation:

- Gradient error PSD is obtained from models of sensor error PSDs and PSDs of gradient field and of angular rates

PSD Models

- Gradiometer instrument: white noise
- Gyros: rate bias plus white noise
- Orientation: initial bias
approximated by simple PSD models
- Aircraft parameters are the same as for analysis of inertial (vector) gravimetry

PSD of $\delta \Gamma_{12}$ and $\delta \Gamma_{33}$ Errors due to "Commensurate" Gyro/Orientation and Gradiometer Errors

System error parameters for commensurate effects

grad noise: $1 \mathrm{E} / \sqrt{ } \mathrm{Hz}$
init. orient. s.d.: 0.6 deg

rate bias: $0.015 \mathrm{deg} / \mathrm{hr}$
rate white noise: $0.1 \mathrm{deg} / \mathrm{hr} / \sqrt{ } / \mathrm{Hz}$

For more details, see (Jekeli, 2003)

Errors in Gravity Gradiometry

Gradiometer White Noise	orientation error	gyro bias	gyro white noise
$30 \mathrm{E} / \sqrt{\mathrm{Hz}}$	20°	$0.5^{\circ} / \mathrm{hr}$	$3 \% / \mathrm{hr} / \sqrt{\mathrm{Hz}}$
$10 \mathrm{E} / \sqrt{\mathrm{Hz}}$	6°	$0.15^{\circ} / \mathrm{hr}$	$1 \% / \mathrm{hr} / \sqrt{\mathrm{Hz}}$
$1 \mathrm{E} / \sqrt{\mathrm{Hz}}$	0.6°	$0.015^{\circ} / \mathrm{hr}$	$0.1^{\circ} / \mathrm{hr} / \sqrt{\mathrm{Hz}}$
$0.1 \mathrm{E} / \sqrt{\mathrm{Hz}}$	0.06°	$0.0015^{\circ} / \mathrm{hr}$	$0.01^{\circ} / \mathrm{hr} / \sqrt{\mathrm{Hz}}$
$0.01 \mathrm{E} / \sqrt{\mathrm{Hz}}$	0.006°	$0.00015^{\circ} / \mathrm{hr}$	$0.001^{\circ} / \mathrm{hr} / \sqrt{\mathrm{Hz}}$

- Each row corresponds roughly to commensurate sensor errors
- Emphasized entries represent typical calibrated error levels for high accuracy airborne systems.

Gravimetry vs Gradiometry

- Moving-base gravimetry depends on accurate determination of kinematic acceleration, e.g. GPS
- technology developments in inertial and kinematic acceleration determination are not in synchrony
- essential limitation in accuracy and resolution
- Moving-base gravity gradiometry depends on accurate angular rate determination
- accelerometer and gyro technology developments are advancing
- new technology offers sensors with exquisite sensitivity
- yields higher resolution; and, with order of magnitude improvement in accuracy, may be useful for change detection
- Gravity gradiometry is better suited to detect high resolution, lowamplitude gravitational signatures
- Practical aspects are similar: Remove terrain effect, perform crossover adjustment, low-pass filtering

