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Outline 
The Earth as a hydrostatic equilibrium – ellipsoid of 
revolution, Newton (1686) 
 

The Earth as a geoid that fits the mean sea surface, 
Gauss (1843), Stokes (1849), Listing (1873) 
 

The Earth as a quasigeoid, Molodensky et al (1962) 



Geoid Definition 
Gauss CF - Listing JB 
The equipotential surface of the Earth's gravity 
field which coincides with global mean sea level 
If the sea level change is considered: 
The equipotential surface of the Earth's gravity 
field which coincides with global mean sea level 
at a specific epoch 



Geoid Realization 
- Global geoid: the equipotential surface (W = W0 ) 

that closely approximates global mean sea surface. 
W0 has been estimated from altimetric data. 

- Local geoid: the equipotential surface adopts the 
geopotential value of the local mean see level which 
may be different than the global W0, e.g. W0 = 
62636856.0 m2s-2  for the next North American 
Vertical datum in 2022. This surface will serve as the 
zero-height surface for the North America region.  



Different W0 for N. A. 
(by M Véronneau) 

Thunder Bay (W0 = 62,636,862.6 m2 s-2) 

Kingston (W0 = 62,636,860.2 m2 s-2) 

Rimouski (W0 = 62,636,859.0 m2 s-2) 

Mean coastal sea level for NA (W0 = 62,636,856.0 m2 s-2) 

31 cm 

67 cm 

43 cm 

Existing geoid models and reference potential 
 (XGEOID series): 62,636,856.0 m2 s-2  
EGM2008, USGG2009 and CGG2010: 62,636,855.69 m2 s-2 (3 cm higher than coastal MSL for NA) 
EGM96, USGG2003 and CGG2005: 62,636,856.88 m2 s-2 (8 cm lower than coastal MSL for NA) 

 
IERS and IAU conventions: 62,636,856.00 m2 s-2 (0 cm, same as coastal MSL for NA) 

36 cm 



 
     Gravity field: geopotential W 

          W = V + Z 

                V  gravitational potential 

  Z  centrifugal potential  

     Differential equation 

ΔV = 0 in free space; Laplace equation 

ΔV = -4πGρ; Poisson equation 

          

 

 
Given: W - W0 and gravity vector grad W on the boundary surface S 
Unknown:  W in external space of S and the geometry of S  
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Geodetic boundary value problems 



Basic Concepts and Definitions 
• The normal gravity field U 

– It contains all masses of the Earth 
– It contains the centrifugal potential  
– Mostly used, e.g. GRS80, WGS84 

• Disturbing potential T = W - U 
– ΔT = 0 in free space 
– ΔT = -4πGρ  inside masses 



Basic Concepts and Definitions 

• Normal gravity  
 

• Gravity anomaly 
 

• Gravity disturbance  
 

• Geoid height 
 

• Height anomaly   
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Flow-chat of solution of GBVP 
 

 

 
r/h/ ∂∂≈∂∂

Linearisation 

Linear GBVP 

Spherical  
approximation 

Linear GBVP in 
spherical approximation 

Constant radius 
approximation 

Spherical GBVP 

 
Approximations: normal 
potential U 
 
 
 
Approximation:  
 
 
Approximation:  l r l ~ R = const. 
 
Analytical solution (integral 
formula) 
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Stokes Problem 
• Given continuous gravity on the geoid, determine the 

geometry of the geoid and gravity field above it. 
- If the gravity is given on the geoid, the following 

fundamental geodetic boundary condition can be 
computed using the normal field:  
 

- After the spherical approximation, the fundamental   
geodetic boundary condition becomes 
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Stokes Solution 
• The Stokes integral: 

 
 

* Stokes integral has to satisfy: 
1. There is no mass above the geoid (topographic      
       reduction, mean density is often assumed)  
2.    Data given on the geoid (gravity reduction) 
3.    Geoid is a sphere (ellipsoidal correction) 
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Topographic reduction 
           Density must be known !!! 

                                                                   Removal of topography masses 
           only (Bouguer reduction): 

                                                             large indirect effect 

                                                               Put topographic masses back 

                                                             isostatic balance concept 

                                                             models: Airy-Heiskanen, 

                                                             Pratt-Hayford, Helmert   
           condensation         
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-  Helmert I: 
Condensation of the topographic 
masses at a surface parallel to the 
geoid at depth d = 21 km 
 

- Helmert II: 
Condensation surface = geoid,           
   d = 0 km 
 
- Arbitrary depth d of condensation 
layer 
 

- Principle of mass conservation: 
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Topographic reduction computation (1) 
 
Decomposition of topographic-isostatic masses into mass elements 
                                                                                  Digital Elevation Models: 
 
                                                               Tesseroids   
    
                                                               no closed analytical solution  
                                                               -numerical integration 
                                                               -Taylor expansion                                           
                                                                                                                        
                                                                            Heck, B. and Seitz, K. (2007): A  comparison of 
           the tesseroid, prism and point-mass  
           approaches for mass reductions in gravity field 
           modelling. JGeod, 81, 121-136. 
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Topographic reduction computation (1, continued) 
 
Approximation of tesseroids by right-rectangular prisms 
                                  Exact analytical solution of 3D integral 
                                         
      Transformation between 
      the edge system of the 
      prism and the local  
      vertical reference frame 
      at the computation point 
      P 
 
      Nagy D., G. Papp, and J. Benedek: 

(2000) The potential and its derivatives for the prism. J Geod, 74/7-8, 552 - 560. 
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Topographic reduction computation (2) 
 

Topographic potential can be reduced into surface integral: 

 

 

               where 

 

 

 

Expand the kernel into Taylor series for application of 1DFFT 

 

 

Wang Y.M. (2011) Precise computation of the direct and indirect topographic effects of 
Helmert’s 2nd method of condensation using SRTM30 digital elevation model, Journal 
of Geodetic Science, 2011. 
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Stokes-Helmert method 

H  Orthometric height 

N  Geoidal height 

(1) Topographic reduction  

Helmert‘s 2nd method of 
condensation 

(2) Gravity reduction 

Harmonic downward continuation, 
boundary data on the geoid 

(3) Stokes integral  
Reference model –remove-restore 

(4) Indirect effect   
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Use of the terrain correction 
- The Helmert anomaly after the topographic and 

gravity reductions (harmonic downward 
continuation) can be approximated by the Faye 
anomaly:     where C is the classical terrain 
correction 

- Then the geoid can be computed approximately using 
the Stokes integral as 

 
 

where Ind is the indirect effect. Its first order 
approximation is   
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Free GBVP (Molodensky problem) 
Heck catagorized it into two types of free GBVS: 

 a)   Vectorial free GBVP 
         S completely unknown 
Given: W - Wo and gradW on S 
Unknown: W in space external of S and position vector of S 
 

 b) Scalar free  GBVP 
     S is known by ϕ, λ (horizontal coordinates) 
     Given: W - Wo and gradW on S 
     Unknown: W in space external of S and vertical coordinate (h) 
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Fixed GBVP 

Fixed GBVP 
S is known (GPS positioning and remotesensing means) 
Given:   W- Wo from leveling and the magnitude of gravity 

|gradW| on S 
Unknown: W in space external of S (and in its vicinity) 
 
Key words of Molodensky problem: free, non-linear, oblique 
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A realization of Molodensky problem 
(scalar free)  

Given on S:  
   W(ϕ, λ ) – Wo  : leveling  
   Gravity  = |gradW| 
                                 
 
Unknown: 
      W (X)  in space external 
of S 
   
      W = V + Z 
      Δ V = 0 
           
    22 



•  Telluroid as reference surface 
• Utilizing a reference gravity filed 

(e.g. GRS80) and the disturbing 
potential T(P) = W(P) – U(P) is an 
small disturbance from the 
reference (normal) potential U 

• Normal height HN can be 
computed from the potential 
number C = W(P) – Wo 

• The height anomaly defined as ζ 
= hP - HN 

Solution of Molodensky problem 
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Gravity anomaly: 
    
                           
       
       Fundamental  
       GBVP equation 
 
Analytical downward continuation 
solution  
 
 
 
 
 
 
Bruns formula 
 
ζ = T(Q) / γ(Q) 
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Geoid vs. quasigeoid (1) 

Geoid 
Poisson differential equation 

 Lap T = - 4πGρ 

Boundary value problem 
 downward continuation from 

the Earth‘s surface onto the 
geoid  

 or 

Boundary value problem with 2 
boundary surfaces 

 - Earth surface (fixed, known) 
 - Geoid (free, unknown) 
   (Grafarend / Martinec) 

Quasigeoid 
Laplace differential equation 

     Lap T = 0 

Boundary value problem 

     Boundary = Earth surface 

Topography 

Geoid 
Ellipsoid 
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Geoid vs. quasigeoid (2) 
              Geoid 

Requirement: topographic 
density and topographic 
reduction 

 

 

Equipotential surface W = Wo 
and it is a smooth surface  

 

 

Reference surface for 
orthometric heights 

Quasigeoid 

Independent of density 
 assumptions; density 
 models only for 
 smoothing of the field 
 

Not an equipotential surface. 
It is rough in continental 
regions  
 

Reference surface for  
 normal heights 
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Geoid vs. Quasigeoid 
• Geoid-quasigeoid separation 

 
 

• More accurate formula see (Flury and Rummel 2009) 
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Difference between geoid and quasigeoid in USA 
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Errors in the formulation 
Linearisation 
     non-linear terms in the boundary condition 

Spherical approximation 
     ellipsoidal terms in the boundary condition 

             topographic terms in the boundary condition 

  Planar approximation   
             omission of terms of order (h/R) ~ 10-3  

  Constant radius approximation 

         downward continuation effect, Molodensky‘s series terms 
29 



Evaluation of the non-linear boundary condition (North 
America) (K. Seitz) 

 

True field ~ EIGEN_GL04C; Nmax = 360 
Topography model: GTOPO30 
Output:  

 non-linear BC 
 non-linear effects in the BC 
 Coordinates of the telluroid points 
 (input for ellipsoidal effects) 
 

Statistics [mGal] Min Max Mean L1 L2 
Linear BC  -244.885 229.076 -8.246 20.011 25.884 
Non-linear BC  -245.197 229.235 -8.246 20.018 25.895 
Non-linear eff.         -0.326 0.259 0.000 0.011 0.018 
 

 30 
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Ellipsoidal correction δNE = δTE(rE(φ,λ), φ, λ))/γ(φ) in m,  
0 ≤ m ≤ n ≤ 360 (Hammer equal-area projection) 
 
Heck, B. and Seitz, K. (2003): Solutions of the linearized geodetic boundary value problem 
for an ellipsoidal boundary to order e3. JGeod, 77, 182-192. DOI 10.1007/s00190-002-0309-
y. 
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Power spectrum of δNE (in m2) and T (in m4s-4) 
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Numerical approximation errors 
    Evaluation of surface integrals: 
      -  Stokes integral 
      -  Terrain correction 
      -  Molodensky‘s series terms of higher order 
      -  Poisson integral and derivatives 
      -  ……… 
      Truncation error 
      Integration over spherical cap, neglection of outer zone  
      Modified integral kernels 
      Numerical evaluation by FFT (gridded data) 
      Finite region  -  boundary effects, periodic continuation 
(zero padding) 
      2D FFT  -  neglection of sphericity (1D FFT for large regions) 
      Aliasing, etc.   
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Comparison of different geoid computation 
methods in the US Rocky Mountains  
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Method of harmonic continuation (HDC) 

•           
 

•   
 

•   
where  
        - Computed from EGM08 with full power 
 

           - Short wavelength from the topography 
computed using the program TC 
        - Truncated Stokes kernel (Wong & Gore, lmax=120) 
  TB – topographic bias 
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Helmert’s 2nd method of condensation 
(H2C) 

•           
 

•   
 

•   
 

where A and            are synthesized from a spherical  
harmonics expansion to degree 2160;          is 
computed from the Helmertized EGM2008.       

P
dHelmertizeref

PP gAgdg )(∆−−∆=

σψ
πγ σ

dSdgRN Hg
Stokes )(

4 ∫∫=

indirectStokes
g

dHelmertizeref NNN ++= )(ζ

indirectN
g

dHelmertizeref )(ζ

38 



Approximate H2C using the Faye anomaly 
(H2C_TC) 

•       
 

•   
 

•   
 

 where TC is the terrain correction and  
 is computed using Grushinsky’s formula 
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Geoid from height anomaly (MO, 
University of Hannover): 

• Gravity anomalies defined at the Earth’s surface 
• EGM2008 geopotential model (lmax = 360) 
• RTM reductions (3” terrain model; 15‘ reference topography)  
• Gridding by least-squares collocation (1' x 1' grid ) 
• Spectral combination by 1D FFT 
• Height anomalies in a 1' x 1' grid  
• Height anomalies converted to  
geoid undulations using the NGS  
Bouguer anomaly grid (same  
gravity data and orth. height  
used for NAVD88) 
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Data used 
• Over 2 million terrestrial and ship gravity 

measurements in NGS database + New version 
of Canadian gravity data 
 

• DNSC08 altimetric gravity anomaly in 
surrounding oceans. 

 

• 3 arc second Digital Elevation Data (SRTM-
DTED1) over the window {10°≤lat≤60° ; 
190°≤lon≤308°} 

 

• Global gravity model EGM08 to degree and 
order 2160 
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Gravity data editing (NGS) 
• The RMS value of the residual free-air anomaly 

on the Earth’s surface is 16.3 mGal for land 
areas. A few hundred thousands residuals are 
larger in absolute value than 6 mGal.  
 

• After removing the RTM gravity, the RMS value of 
the land residuals is reduced to 5.1 mGal.  
 

• All 1341 residuals larger in absolute value than 
40 mGal were rejected. Then a K-nearest-
neighbor editing rejected 130,800 additional 
observations.  
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Gravity data editing (U Hannover) 
• Check for gross errors 
• Editing of the following data: 

–      737 pts. (from DEM comparison) 
–      161 pts. (from 1st check run) 
– 19,774 pts. (altimetry near the coast) 
–      723 pts. (from 2nd check run) 

 

43 



Spherical harmonic expansion of the 
topographic potential 

• The spherical approximation is applied 
 

• SRTM DEM is expanded in a S.H. series using 
quadrature to degree and order 2700  
 

• The zero and 1st degree coefficients are 
excluded 
 

•  The spherical harmonic series is used to 
compute the direct and indirect effect of Helmert’s 
2nd method of condensation 
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GPS/leveling  comparisons units are in cm 
 

State No. H2C TC HDC  RTM & 
KNN Editing 

HDC(USGG09) MO(V04) 

AZ 242 9.4 8.9 9.6 8.7 9.0 

CA 785 13.5 13.2 13.3 13.2 12.2 

CO 565 8.8 8.2 8.7 8.3 7.1 

ID 97 9.0 8.9 7.5 7.8 7.9 

MT 151 10.8 12.4 8.0 9.1 7.8 

NV 70 9.5 10.3 8.6 8.8 7.5 

NM 107 8.6 9.5 9.3 9.1 8.8 

OR 202 8.2 8.1 8.0 8.1 8.2 

UT 55 10.0 9.3 8.6 9.0 8.1 

WA 259 8.4 9.1 7.0 8.3 7.5 

WY 101 9.1 10.3 9.1 8.9 7.5 

OK 73 5.7 5.7 5.4 5.7 5.0 

KS 100 5.7 5.7 5.5 5.8 6.4 

NE 145 4.7 4.9 4.6 4.7 5.0 

ND 47 3.2 3.4 3.7 3.3 3.1 

SD 242 6.2 6.1 6.2 6.2 5.5 

TX 263 8.2 8.4 8.6 8.5 8.6 52 



Discussion and conclusions 
• Differences between the different geoid solutions are in 

the range of 5-6 cm in the western mountainous 
region. 

• These differences are mostly due to differences in data 
weighting, RTM application and use of the reference 
gravity model. 

• GPS/leveling comparisons indicate that the geoid 
solutions are very comparable and deliver almost the 
same results. 

• The MO performs slightly better than other methods 
(on the mm level for the whole region). 
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xGeoid Modeling at NGS 
• xGeoid is computed annually to show the improvement 

bought in by GRAV-D 
• Spherical harmonic expansion of GRAV-D data at flight 

altitude 
• Combination of the latest satellite gravity model, the airborne 

gravity expansion and EGM2008 spectrally – details can be 
found in the following talk by Dr. Holmes 

• Using the airborne gravity enhanced spherical harmonics 
series as the reference field, compute USGG2009 type of 
solution – truncation degree based on flight altitude 

• Residual terrain model is used in remove-restore fashion.     



http://beta.ngs.noaa.gov/GEOID/xGEOID15/xG
EOID15_technical_details.shtml 

http://beta.ngs.noaa.gov/GEOID/xGEOID15/xGEOID15_technical_details.shtml
http://beta.ngs.noaa.gov/GEOID/xGEOID15/xGEOID15_technical_details.shtml




Spectral Combination 
Assume k sets of data each with global coverage. The spherical 
harmonic expansion of the ith data set is   
 

                                                      
 coefficients vector 
 vector of harmonic functions 
 maximum degree and order expansion 
Based on the least squares principle, the optimal combination 
will be a simple weighted mean: 
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Spectral Combination 
where 
        , 
 
and       is the error degree variance of  the coefficients. 
An example: spectral combination of terrestrial, airborne gravity 
data, and a satellite only gravity model. 
 
 

where 
 

∑
=

==
k

i

i
nn

n

i
ni

n pp
p
p

1

,ω i
n

i
np

σ
1

=

, 

  

)()(),(
max

2

1 Ω=++=Ω ∑
=

+
n

N

n
n

nTerrAirSat

r
aTTTrT φα

Terr
n

Terr
n

Air
n

Air
n

Sat
n

Sat
nn αωαωαωα ++=

i
nσ



Equivalence Relationship 
On a sphere of radius a, the Stokes integral and harmonic series 
are equivalent (Heiskanen and Moritz 1967 p. 30): 
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Airborne Gravity Contribution 
Therefore, the spherical harmonic series of the airborne gravity 
is equivalent to the Stokes integral by 
 
 
where 
 
 
       
        average flight altitude  
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Terrestrial Gravity Contribution 
In the same way, the spherical harmonic series of the terrestrial 
gravity is equivalent to the Stokes integral by 
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Spectral Combination 
Practical consideration:  
 Airborne and terrestrial gravity are given only locally. 
How to apply the spectral combination in a most precise way? 
 
Possible solution: Using the relationship between the spherical 
harmonic series and the global integrals, and using a global 
gravity model (GGM).  

, 

  



Use of a GGM (1) 
The following relationship holds: 
 
 
 
 
 
 
 
where                                           are gravity anomaly, coefficients 
vector and maximum degree of expansion of the GGM. 
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Use of a GGM (2) 
Using a GGM, the contribution of airborne and terrestrial gravity 
can be written as  
 
 
 
 
 
If the integration area is larger than one degree radius and the 
GGM is higher than 360, the truncation error (omitting the 
contribution of the rest of the area) is on the mm level.  
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Put Together… 
The geoid can be computed as 
 
 
Or 
 
where 
 
 
and  is the geoid-quasigeoid separation. 
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Remove-Restore Scheme 
If we set 
    for all n, (no use of satellite gravity 
model and airborne gravity) 
Then we have 
 
where 
 
 
This is nothing but the widely used remove-restore scheme.  
Notice the error in gravity data are not reduced. 
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Wong-Gore Kernel Truncation 
If we set 
    for n ≤ N’ 
    for  n> N’ 
where N’ is the degree of choice, then the spectral combination  
becomes the Wong-Gore kernel truncation:  
 
where 
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Determination of spectral weights 
It is critical to have the right spectral weights for the optimal 
solution. The correctness of the weights depends upon the 
correct error degree variances. Current there are two ways to 
determine the weights: 
1.Use of systematic and random error models (colored and white 
noises) in terrestrial and airborne gravity model (Agren 2004) 
2.Compute the error degree covariance function from the data 
directly, then expand it into error degree variances (Jiang and 
Wang 2016) 
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 Spectral weights for Texas 
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Spectral weights (Texas) 
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Downward Continuation Effect (Airborne) 
• Downward continuation is an unstable process and may 

corrupt the solution if not properly treated. 
• Using the spectral weights, the downward continuation is 

automatically stabilized. No regularization, e.g., the 
Tikhonov regularization is need. 
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Conclusions of Spectral Combination 
 Advantages: 
•It weights the data according to its error characteristics and 
spectral contents. It makes the best combination in the spectral 
domain. 
•The downward continuation of airborne gravity is stabilized in 
an optimal way. No regularization is needed. 
Disadvantage: 
•The error characteristics of the data can only be assessed by 
experience. However, it has been shown that the combined 
solution is not very sensitive to the weights at higher 
frequencies.  Weights by error models and those computed from 
gravity data give very close results.    
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Research Topics of Geoid Determination 
• Application of topographic reduction to airborne gravimetry 
• Estimation of spectral weights for satellite model, airborne 

and terrestrial gravity data 
• Study the spectral weights for flat, moderate and rough 

terrain areas. What are their general and special features?  
• Topographic effect on geoid determination 
• Combination of the topographic potential into gravity field 

modeling 
• Effect of density anomaly on the mean gravity and geoid 

determination 
• Application of ultra-high ellipsoidal harmonics for gravity field 

modeling 
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