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I. Introduction - Airborne Gravity Data Acquisition 
 
• A very brief history of airborne gravimetry 
 
• Why airborne gravimetry? 

National Geodetic Survey 
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A Brief History of Airborne Gravimetry 
• Natural evolution of successes in 1st half of 20th century with ocean-bottom, 

submarine, and shipboard gravimeters operating in dynamic environments 
− airborne systems promised rapid, if not highly accurate, regional gravity 

maps for exploration reconnaissance and military geodetic applications 

− 5-10 minute average, 10 mgal accuracy 

• 1958: First fixed-wing airborne gravimetry test (Thompson and LaCoste 1960) 

− high altitude, 6-9 km 

• Special challenges 

− trade accuracy for acquisition speed  

− critical errors are functions of speed and speed-squared 

− difficulty in accurate altitude & vertical acceleration determination 

• Further tests by exploration concerns 

− 10 mGal accuracy, 3 minute averages (Nettleton et al. 1960) 

− LaCoste & Romberg, Austin TX 

− Gravity Meter Exploration Co., Houston, TX 
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First Airborne Gravity Test – Air Force Geophysics Lab 
1958 

Instruction Manual LaCoste Romberg Model “S” Air-Sea Dynamic Gravity Meter, 2002; with permission 

• The first LaCoste-Romberg 
Model “S” Air-Sea Gravimeter 

• KC-135 jet tanker 

− Doppler navigation system – elevation above mean sea level determined 
from the tracking range data 

− flights over an Askania camera tracking range at Edwards Air Force Base 
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First Successful Helicopter Airborne Gravimetry Test 
1965 

• Further tests and development by exploration companies 

− 5 mGal accuracy, hovering at 15 m altitude (Gumert 1998) 

− Navy sponsored 

• Carson Services, Inc. (Carson Helicopter)  
− gimbal-suspended LaCoste and Romberg Sea gravimeter 

− principally, Carson Services throughout the 1960s and 1970s 
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Rapid Development with Advent 
of GPS (1980s and 1990s) 

• Naval Research Laboratory 
– John Brozena 

• Academia (in collaboration with 
industry and government) 

− University of Calgary (K.P. Schwarz) 

− University FAF Munich (G. Hein) 

− Swiss Federal Institute of Technology (E.E. Klingele) 

− Lamont-Doherty Earth (Geological) Observatory (R. Bell) 

• National Survey and Cadastre of 
Denmark (DKM) – Rene Forsberg 

(Brozena 1984) 

gravimeter system 

GPS 

P3-A Orion aircraft 

Twin-Otter Aircraft 

Olesen (2003) 

• Industry … 

… 
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Dedicated International Symposia 
& Workshops 
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• Gravity data until the early 1960s were obtained primarily 
by point measurements on land and along some ship tracks.  

The Need for Global Gravity Data 

− map of data archive of 1963 (Kaula 1963) 
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1990s – More Data, Still Many Gaps 

• Greater uniformity, but only at relatively low resolution 

− map of terrestrial 1°×1° anomaly archive of 1990 (Rapp and Pavlis 1990) 
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Satellite Resolution vs Mission Duration and Integration Time 

CHAMP: 10 s 
GRACE:  5 s 

GOCE: 5 - 10 s 
Laser-interferometry GRACE follow-on: 1 - 10 s 

* 

Why Airborne Gravimetry? 

• Satellite-derived 
gravitational models 
are limited in spatial 
resolution because 
of high inherent 
satellite speed 

• Only airborne 
gravimetry yields 
higher resolution 
efficiently 
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Gravity Resolution vs Accuracy Requirements in Geophysics 

Satellite Gravimetry/Gradiometry Airborne Gravimetry/Gradiometry 
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sea-level rise 

Geodetic Motivation 

http://www.fourwinds10.net/resources/uploads/images/missouri%20river%20flooding(1).jpg 

River flooding 

coastal flooding from 
hurricane (Sandy) 
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GNSS and Geopotential 
• Traditional height reference surface: equipotential surface 

(geoid) 

H 

N 

h 

ellipsoid height 
(from GNSS) 

orthometric 
height 

geoid undulation 
(from gravimetry) 

topographic surface 

level, equipotential surface 
(geoid) 

reference surface 
(ellipsoid) 

− needed for determining and monitoring the flow of water, from 
flood control to sea level rise  

H h N= −− replace arduous spirit leveling with GNSS:  
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II. Elemental Review of Physical Geodesy 
 

• Gravitational potential, gravity 

• Normal gravity 

• Disturbing potential, gravity anomaly, deflection of the 

vertical 

• Geoid determination aspects 

National Geodetic Survey 
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Basic Definitions 

Earth 

rotation, ωE 

gravitation gravity 

centrifugal 
acceleration 

• Gravitational potential, V 

− due to mass attraction 

− gravitational acceleration: V=g ∇

• Centrifugal “potential”, φ 

− due to Earth’s rotation 

− centrifugal acceleration: cent φ=a ∇

• Gravity potential, W = V + φ 

− gravity acceleration: cent= +g g a

Physical geodesy makes the 
distinction between gravitation 
and gravity, especially in 
terrestrial gravimetry 
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Normal Gravitational Potential 
• Mathematically simple potential and boundary 

– approximates Earth’s potential and geoid to about 5 ppm 
– approximates Earth’s gravity to about 50 ppm 
– rotates with the Earth 

boundary = rotational ellipsoid 

2 2 2
0boundary

1 cos
2 e pV U rω φ= −

a 

b 
φ rp 

ωE 

• boundary function is chosen so that 
gravity potential on boundary is a 
constant, U0 

centrifugal potential on ellipsoid 
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Normal Gravity Potential 

( ) ( ) ( )

( )
2 1

2 2 2
2 2
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• Expressed as spherical harmonic series in spherical coordinates 

− closed expression exists in ellipsoidal coordinates 

• Normal gravity vector: U= ∇γ

−        depends on only 4 parameters: ωe,      , a, GM                   
− (e.g., WGS84 parameters) 
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Gravity Disturbance and Anomaly 

• Disturbing potential: T W U= − (W = total gravity potential) 

◦ near Earth’s surface, γN ≈ 0 

N N N
n

E E

D D D D

g g
g g

g g

γ
δ

γ γ

−   
   = ≈   
   − −   

g− in n-frame (North-East-Down): 

◦ due to symmetry, γE = 0 

• Gravity disturbance vector: W Uδ = − = −g g∇ ∇ γ

− gravity disturbance: gδ = −g γ

− P and Q are points on the ellipsoid normal such that WP = UQ 

• Gravity anomaly vector: P P Q P QW U∆ = − = −g g∇ ∇ γ

− gravity anomaly: P P Qg∆ = −g γ
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Deflection of the Vertical 

N
n

E

D D

g g
T g g

g g

ξ
δ η

δ γ

−   
   = ≈ − ≈   
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g∇

ξ = north deflection 

η = east deflection η 
ξ 

P 

Deflection of 
the vertical at P 

East 

North 

Down 

ellipsoid 

Gravity 
vector at P 

−ξ |g| 

−η |g| 

g 
− linear approximation 

− signs agree with convention 
of astronomic deflection of 
the vertical 
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Geoid Determination 

• Bruns’s Formula: where N0 is a height datum offset 
0 0

0

0
1

P P
Q

N T N
γ

= +

• Boundary-value Problem: 2 0T∇ = above geoid (by assumption) 

0 0

0 00

1
P P

P QQ

Tg T
h h

γ∆
γ′ ′

′

∂ ∂
= − +

∂ ∂
boundary 
condition 

( )
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0
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• Stokes’s formula 

gravity reductions 

,
aP Pg g∆ ∆′ ′

+ 

0Pg∆ ′

|| 

geoid 

ellipsoid 
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Details 

• Gravity reductions to satisfy the boundary-value conditions 

− re-distribution of topographic mass; consequent indirect effect 

− downward continuation (various methods) 

• Include existing spherical harmonic model (satellite-derived) 

− remove-compute-restore techniques 

• Ellipsoidal corrections 

− account for spherical approximation of geoid, boundary condition 

• Back to Motivation 

− use airborne gravimetry to improve spatial resolution of data 
(boundary values) – few km to 200 km wavelengths 
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III.  Basic Theory of Moving-Base Scalar Gravimetry 
 
• Fundamental laws of physics and the gravimetry equation 
 
• Coordinate frames 
 
• Mechanizations and methods of scalar gravimetry 
  
• Rudimentary error analyses 

National Geodetic Survey 
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• Moving-Base Gravimetry and Gradiometry are 
based on 3 fundamental laws in physics 

Fundamental Physical Laws 

Issac Newton 
1643 - 1727 

− Newton’s Second Law of Motion 

− Newton’s Law of Gravitation 

Albert Einstein 
1879 – 1955  

− Einstein’s Equivalence Principle  

• Laws are expressed in an inertial frame 

• General Relativistic effects are not yet needed 
− however, the interpretation of space in the theory of general relativity 

is used to distinguish between applied and gravitational forces 
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Inertial Frame 

• The realization of a system of coordinates that does not rotate 
(and is in free-fall, e.g., Earth-centered) 

• Modern definition: fixed to quasars – which exhibit no 
relative motion on celestial sphere 

• International Celestial Reference Frame (ICRF) based on 
coordinates of 295 stable quasars 

1i 

2i 

3i 
quasar 1 

quasar k 
quasar 2 

notation convention: 
- axis identified by number 
- superscript identifies frame 
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Newton’s Second Law of Motion 

• In the presence of a gravitational field, this law must be modified: 

– Fg is a force associated with the gravitational acceleration due to a field (or 
space curvature) generated by all masses in the universe, relative to the 
freely-falling frame (Earth’s mass and tidal effects due to moon, sun, etc.) 

i gm +x = F F

• Time-rate of change of linear momentum equals applied force, F 

– mi is the inertial mass of the test body ( )constant  i im m= → x = F

( )i
d m
dt

x = F mi F 
x 

− action forces, F, and gravitational forces, Fg, are fundamentally different 
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Newton’s Law of Gravitation 

• Many mass points 

P 

Mj 

j

j
P

jj

M
V G= ∑ 

− law of superposition: 

− it’s easier to work with field potential, V 

V=g ∇ V GM= 

2
g

g g

Mm
G m= =F n g



• Gravitational force vector 

– G = Newton’s gravitational constant 

– g = gravitational acceleration due to M 

– mg is the gravitational mass of the test body 

mg 
n 

M 

unit vector 
attracting 

mass 

− mass continuum: P

M

dMV G= ∫ 
dM 

P 
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Equivalence Principle (1) 
• A. Einstein (1907): No experiment performed in a closed system 

can distinguish between an accelerated reference frame or a 
reference frame at rest in a uniform gravitational field. 
– consequence: inertial mass equals gravitational mass 

i gm m m= =

• Experimental evidence has not been able 
to dispute this assumption 
− violation of the principle may lead to new 

theories that unify gravitational and other 
forces 

− proposed French Space Agency mission, 
MICROSCOPE*, aims to push the 
sensitivity by many orders of magnitude  

* Micro-Satellite à traînée Compensée pour l’Observation du Principe d’Equivalence (Drag Compensated 
Micro-satellite to Observe the Equivalence Principle); Berge et al. (2015) http://arxiv.org/abs/1501.01644 
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2

2
d x
dt

=x◦                  , vector of total 
 kinematic acceleration 

thrust ⇒ a g = gravity 

  = acceleration 
of rocket 

x

i
i i

m
= +

Fx g

• Equation of motion in the inertial frame 

◦  specific force, or the 
 acceleration resulting from 
 an action force; e.g., thrust 
of a rocket 

,
i

i

m
=

F a

≤ ⇒a g no lift-off ! 

Equivalence Principle (2) 

i i i= +x a g
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What Does an Accelerometer Sense? 

gravitational field, g 
no applied acceleration 

m 

g g 

g 

0 

input axis 

gravitational field, g  
applied acceleration, a 

spring constant, k 

m 
0 g 

g 

g a 

za 

force of spring: kz 

• Accelerometer does not sense gravitation, only acceleration 
due to action force (including reaction forces!) 

accelerometer indicates: 0 accelerometer indicates: za ~ a 
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t0 
at rest on 

launch pad 

t1 
rocket 
ignites 

t2 
fuel is 
gone 

t3 
maximum 

height 

t4 
parachute 
deploys 

t5 
at rest on 

launch pad 

time 

Rocket: experiences no atmospheric drag 
 engine has constant thrust 
 launches vertically 

g 

0 

Accelerometer axis: 
vertically up 

What Does Accelerometer (or Gravimeter) on Rocket Sense? 
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Static Gravimetry – Special Case  

= −g x a• Assume non-rotating Earth (for simplicity) 

• All operational moving-base gravimeters are relative 
sensors 

− it is an accelerometer that senses specific force, a 

• Relative (spring) gravimeter: = ⇒ = −0x a g

− with sensitive axis along plumb line, a is the reaction force 
of Earth’s surface that keeps the gravimeter from falling 

− indirectly, it senses the reaction force that keeps the 
reference from falling 

− it tracks a test mass in vacuum (zero spring force) 

• Absolute (ballistic) gravimeter: = ⇒ =0a x g
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Basic Equation for Moving-Base Gravimetry  
i i i= −g x a• In the inertial frame: 

• Need to introduce: 

– coordinate frames 

– rotations and lever-arm effects 

• Get more complicated expressions for gravimetry equation 

• Because: 

– specific forces are measured in a non-inertial frame attached to 
a rotating body (vehicle) 

– generally, gravitation is desired in a 
local, Earth-fixed frame 

– specific forces and kinematic accelerations refer to different 
measurement points of the instrument-carrying vehicle  

a 
GPS x
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Two Possible Approaches to Determine g (1) 

( ) ( ) ( )( ) ( ) ( ) ( )( )
0

0 0 0 ' ' ' '
t

i i i i i

t

t t t t t t t t t dt= + − + − +∫x x x a g

• Position (Tracking) Method to determine the unknown: g 
− Integrate equations of motion 

− Positions, x: from tracking system, like GPS or other GNSS 
− Specific forces, a: from accelerometer 

• For concepts, consider inertial frame for simplicity: i i i= +x a g

− Disadvantage: g must be modeled in some way to perform the integration 
(e.g., spherical harmonics in satellite tracking, with statistical constraint) 

− method is used for geopotential determination with satellite tracking, and 
was used also with ground-based inertial positioning systems  

− Advantage: do not need to differentiate x to get  x

− Not used for scalar airborne gravimetry due to vertical instability of integral 
◦ but can be (is) used for horizontal components of gravity! 
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• Accelerometry Method to determine the unknown: g 
i i i= −g x a

− Specific force, a : from accelerometer 

− Kinematic acceleration,    : by differentiating position from tracking 
system, like GPS (GNSS)  

x

• Either position method or accelerometry method requires 
two independent sensor systems 
− Tracking system 

− Accelerometer (gravimeter) 

− Gravimetry accuracy depends equally on the precision of both systems 

Two Possible Approaches to Determine g (2) 

− Advantage: g does not need to be modeled 

− Disadvantage: positions are processed with two numerical differentiations 

◦ advanced numerical techniques → may be less serious than gravity modeling problem 
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The Challenge of Airborne Gravimetry 
• Both systems measure large signals e.g., (> ± 10000 mGal) 

− signal-to-noise ratio may be very small, depending on system accuracies 

• Desired gravity disturbance is orders of magnitude smaller 

• e.g., INS/GPS system – data from University of Calgary, 1996 

▬ IMU accelerations 

▬ GPS accelerations 
 (offset) 

42 10⋅

[m
G

al
] 

MathCad: example_airborne_INS-GPS.xmcd 

[m
G

al
] 

time [s] 

Subtract and filter 
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• Specific frames to be considered: 

– navigation frame: frame in which navigation equations are 
formulated; usually identified with local North-East-Down (NED) 
directions (n-frame). 

– Earth-centered-Earth-fixed frame: frame with origin at Earth’s 
center of mass and axes defined by conventional pole and Greenwich 
meridian (Cartesian or geodetic coordinates) (e-frame). 

• Other coordinate frames 
– rotating with respect to inertial frame, 

– may have different origin point, 

– have different form of Newton’s law of motion, 
– all defined by three mutually orthogonal, usually right-handed axes 

(Cartesian coordinates). 

Coordinate Frames 
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Earth-Centered-Earth-Fixed Coordinates 

• Cartesian coordinate vector in e-frame: ( )T

1 2 3
e e e ex x x=x

ellipsoid 

equator 

h 

meridian 

3
ex

3e

1e

1
ex

2
ex

2e

λ
φ

ex

• Geodetic coordinates, latitude, longitude, height: , ,hφ λ

− refer to a particular ellipsoid 
 (assume geocentric) with semi-major 

axis, a, and first eccentricity, e 

− are orthogonal curvilinear 
e-frame coordinates 
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Transforming Between Cartesian & Geodetic Coordinates 

• Cartesian and geodetic coordinates may be used interchangeably 

– radius of curvature in meridian: 

( )
( )

2

3/ 22 2

1

1 sin

a e
M

e φ

−
=

−

– radius of curvature in prime vertical: 

2 21 sin
aN

e φ
=

−

φ 

meridian plane 
prime vertical 

plane 

( )

( )

( )( )

1

2

2
3

cos cos

cos sin

1 sin

e

e

e

x N h

x N h

x N e h

φ λ

φ λ

φ

= +

= +

= − +

( ) ( )
( )

( ) ( )

2
1 3

2 2
3

1 2

1
2 1

2 2 2
1 2 3

sintan 1

tan

cos sin

e

e
e e

e e

e e e

x e N
xx x

x x

h x x x a N

φφ

λ

φ φ

−

−

 
  = +  
  + 

=

= + + −
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Rotations and Angular Rates Between Frames 
• Assume common origin for frames 

•        = angular rate vector of t-frame relative to s-frame; 
components in t-frame 

t
stω

• Let 
1

2

3

t
st

ω
ω
ω

 
 =  
 
 

ω then 
3 2

3 1

2 1

0
0

0

t t
st st

ω ω
ω ω
ω ω

− 
  × ≡ = −   
 − 

Ωω

− cross-product is same as multiplication by skew-symmetric matrix 
s s t s t
t t st t st = × = C C C Ωω• Time-derivative: 

– matrix, A: s s t t
t s=A C A C

– vector, x: s s t
t= Cx x

•      = matrix that rotates coordinates from t-frame to s-frame s
tC

−        is orthogonal: ( ) ( )1 Tt s s
s t t

−
≡ =C C Cs

tC
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Earth-Fixed vs. Inertial Frames 

( ) 2i i e e e e i e e i e
e ie ie ie e ie e= + + +C Ω Ω Ω C Ω Cx x x x  

2i i e i i e i e i e
e e e e= ⇒ = + +C C C Cx x x x x x   

• Transformation of coordinates between i-frame 
and e-frame is just a rotation about the 3-axis Eω

Etω
λ

,3i e

1e1i

cent
ea

ex

0* = neglect rates of polar motion and 
precession/nutation 

e
ied dt = 0ω

( )T* *0 0e
ie Eω=ω

ωE = Earth’s rotation rate 

cent

2e i ee e e
ie

e e e e
i ie

e
ie

e

= + + = +

= +−

C Ω ΩΩx x x a g

a q

x  

• Extract centrifugal acceleration from other kinematic accelerations 

 defines q e e e⇒ = −g q a
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Navigation Frame  

1n 

2n 

3n h 

λ φ

• Usually, north-east-down (NED)-frame, or n-frame 

− moves with the vehicle – not used for coordinates of the vehicle 

− used as reference for velocity and orientation of the vehicle; and, gravity  

− conventional reference for terrestrial 
gravity 

• Alternative: vertical along plumb line, n′-frame 

− no “horizontal” gravity components 

3n′
3n

deflection of the 
vertical (DOV) 
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Body Frame 
• Axes are defined by principal axes of the vehicle: forward (1), 

to-the-right (2), and through-the-floor (3) 

3b 

2b 

1b G 

• Gravimeter (G) measurements are made either: 

− in the n-, n′-frames – platform is stabilized using IMUs* 

− in the b-frame – strapdown system; gyro data provide orientation 

* inertial measurement units 
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Moving-Base Gravimetry – Strapdown Mechanization 

ba – inertial accelerations measured by accelerometers in body frame 
ix – kinematic accelerations obtained from GNSS-derived positions, x, in i-frame 

( ) ( )
( ) ( )

( ) ( )

sin cos sin sin cos
sin cos 0

cos cos cos sin sin

E E

E E

E E

n
i

t t
t t

t t

φ λ ω φ λ ω φ
λ ω λ ω

φ λ ω φ λ ω φ

 − + − +
 = − + + 
 − + − + − 

C – transformation obtained from 
GNSS-derived positions, φ, λ 

− lever-arm effects are assumed to be applied  

GNSS transformation from 
inertial frame to n-frame 

transformation from body 
frame to inertial frame gyros 

accelerometers 

in i-frame 

Gravitational Vector 
in n-frame 

( )n n i i b
i b= −C Cg x a
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Moving-Base Gravimetry – Stabilized Mechanization 

GNSS transformation from 
inertial frame to n-frame 

tilt of platform 
relative to n-frame 

gyros 

accelerometers: 
vertical plus 
2 horizontal 

platform (p-) frame 
Gravitational Vector 
in n-frame 

n n i n p
i p= −C Cg x a

• Inertial accelerations,     , from accelerometers in platform frame pa

◦ adequate for benign dynamics 

− two-axis damped platform – level (n′-frame) alignment using gyro-driven 
gimballed platform in the short term and mean zero output of horizontal 
accelerometers in the long term  

• Mechanizations 

− Schuler-tuned inertial stabilized platform – alignment to n-frame based on 
inertial /GNSS navigation solution and gyro-driven platform stabilization  

◦ better for more dynamic environments 
◦ ideally,            ; but note,  n-frame differs from n′-frame by deflection of the vertical n

p =C I
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Two-Axis Stabilized Platform 

− gryoscope maintains 
direction in space, and 
commands torque motor 
to correct deviation of 
platform orientation due 
to non-level vehicle 

• Schematic for one axis 

motor 

processor 

• Schuler-tuned three-axis stabilization: more accurate IMUs and n-
frame stabilization (using navigation solution velocity in n-frame) 

− horizontal accelerometer, through processor, ensures that gryoscope 
reference direction is precessed to account for Earth rotation and curvature 

◦ zero acceleration implies level orientation (without horizontal specific forces!) 

◦ corrects gyro drift, but is subject to accelerometer bias 

◦ ad hoc damping of platform by processor 
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Scalar Moving-Base Gravimetry 
• Determine the magnitude of gravity – the plumb line component 

− consistent with ground-based measurement (recall gravimeter is leveled) 

cent
n n n= + ag g− gravity vector: 

3
ng g ′=

− since n′-frame is aligned to plumb line, 

( )cent
n n i n b nn n

i b= − = − + −C C ag x a q a− gravitation vector: 

ellipsoid 

h 
ng

na

nq

along plumb line 

deflection of 
the vertical 
(DOV) 

3n

n n n= −g q a GNSS  qn 

◦ n-frame mechanization does not account 
for the deflection of the vertical 

n nq a− note: straight and level flight  → 

− thus:                   , but note: 3
ng g≠ng = g

− this holds in any frame!  e.g., n n n′ ′ ′= −g q a



3.26 Theoretical Fundamentals of Airborne Gravimetry, C. Jekeli, OSU Airborne Gravity for Geodesy Summer School , 23-27 May 2016 

• One Option: n n ng = = −g q a

• Calgary group demonstrated good results (e.g., Glennie and 
Schwarz 1999); see also (Czompo and Ferguson 1995) 

Unconstrained Scalar Gravimetry 

• Requires comparable accuracy in all accelerometers and 
precision gyros if platform is arbitrary (e.g., strapdown) 

cent
n n i n

i= +Cq x a obtained exclusively from GNSS ◦  

n n b
b= Ca a requires orientation of b-frame (relative to n-frame) ◦  

◦ unconstrained in the sense that the frame for vectors is arbitrary 
(n-frame is used for illustration) 

◦ also known as strapdown inertial scalar gravimetry (SISG) 



3.27 Theoretical Fundamentals of Airborne Gravimetry, C. Jekeli, OSU Airborne Gravity for Geodesy Summer School , 23-27 May 2016 

neglecting the DOV, qn′ = qn ( ) ( )2 2' 2
3 3 1 2
n n n ng g q a q q≡ ≈ − − −

Rotation-Invariant Scalar Gravimetry (RISG) 

• Then ( ) ( )

( ) ( )

( ) ( )

2 22
3 1 2

2 22
1 1 2 2

2 22
1 2

n n n

n n n n

n n

a a a a

a q g q g

a q q

′ ′ ′

′ ′ ′ ′

′ ′

= − −

= − − − −

= − − 1 20n ng g′ ′= =since 

• Platform orientation is not specifically needed for a2 

− however, errors in qn, being squared, tend to bias the result (Olesen 2003) 

( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 22
1 2 3 1 2 3
p p p n n na a a a a a a′ ′ ′= + + = + +

• Another option to get    : based on total specific force from 
gravimeter and orthogonal accelerometers 

g
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• It can be shown (Appendix A) that 

( )
n

n n n n
ie in

d
dt

= + +Ω Ωvq v
( )

( ) ( )
( )

0 2 sin

2 sin 0 2 cos

2 cos 0

e

n n
ie in e e

e

λ ω φ φ

λ ω φ λ ω φ

φ λ ω φ

 + −
 
 + = − + − +
 
 + 

Ω Ω

 

 

 

• Define Earth-fixed velocity vector in the n-frame 

( )
( )cos

N
n n e

e E

D

v M h
v N h
v h

φ
λ φ

 + 
  = = = +  

   −   

Cv x







sin cos sin sin cos
sin cos 0

cos cos cos sin sin

n
e

φ λ φ λ φ
λ λ

φ λ φ λ φ

− − 
 = − 
 − − − 

C

RISG Approach in More Detail (1) 

• Thus, strictly from GNSS, the third component is 
2 2

3 2 cosn N E
e E

v vq h v
M h N h

ω φ= − + + +
+ +


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• Third component of                      , along plumb line, 'n n n′ ′= −g q a

( )
2 2

3 tilt DOV2 cosp N E
E E

v vg a h v a q
M h N h

ω φ δ δ= − − + + + + −
+ +



Eötvösgδ
gravimeter 

( ) ( ) ( )2 22
3 3 tilt 1 23

n n p p n n
pa a a a q qδ′ ′ ′ ′ = = − = − − 

 
C a

• Inertial acceleration includes tilt error if platform is not level 

RISG Approach in More Detail (2) 

• Kinematic acceleration (from GNSS) includes neglect of DOV 

( )3 3 DOV3

n n n n
nq q qδ′ ′= = −C q
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Eötvös Effect 

• Approximations  

− spherical: 

2

Eötvös 2 cosE E
vg v

R h
δ ω φ≈ +

+

− first-order ellipsoidal (Harlan 1968): 

( )( ) ( )
2

2 2 2
Eötvös 1 1 cos 3 2sin 2 sin cos 1E

v h hg f v O f
a a a

δ φ α ω α φ   ≈ + − − − + + +   
   

a = ellipsoid semi-major axis; α = azimuth; v = ground speed! 

Loránd Eötvös 
1848 - 1919 

• Exact in n-frame (note: vN,E at altitude!) 

( )
2 2

Eötvös 2 cos N E
E E

v vg v
M h N h

δ ω φ= + +
+ +

total velocity [km/hr] 
Eö

tv
ös

 E
ff

ec
t [

m
G

al
] 

heading = 45°, latitude = 45° 
MathCad: EotvosEffect.xmcd 



3.31 Theoretical Fundamentals of Airborne Gravimetry, C. Jekeli, OSU Airborne Gravity for Geodesy Summer School , 23-27 May 2016 

DOV Error in Kinematic Acceleration 

( )DOV 3 1 23

n n n n n
nq q q qδ ξ η′= − = − −C q

• DOV error 

• Assume rms(DOV) = 10 arcsec, q1,2 = 104 mGal 
( )DOVrms 0.7 mGalqδ =

( ) ( )1 2

1 0
0 1

1

n
n

ξ
η ξ η

ξ η

′

− 
 = − = − 
 
 

C R R

• DOV components define the small angles between the n- 
and n′-frames 

− ignore rotation about 3-axis DOV 

ξ 

north pole 

geodetic 
meridian 

astronomic 
meridian 

η 

geodetic 
zenith 

neg. plumb 
line 

horizon 

east 

• This error is correctable, e.g., using EGM2008 deflection model 
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Tilt Error (1) 

α

1p

3p

2 p

χ

ν

• Better model for the tilt error (Olesen 2003) 

− define orientation angles, ν, χ, α 

cos sin cos sin
sin cos sin cos

1

n
p

α α χ α ν α
α α χ α ν α

χ ν

− + 
 ≈ − 
 − 

C

− assume ν, χ are small; α is arbitrary 

− thus, approximate platform stabilization is required! 

• One way to compute tilt error (p. 3.27) 

− random errors in            are squared and can cause bias (rectification error) 1 2,n nq q

( ) ( )2 22
tilt 3 1 2

p n na a a q qδ = − − − (neglecting DOV) 
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Tilt Error (2) 

( )
( )

1 1 2 31

2 1 2 32

cos sin cos sin
sin cos sin cos

n p p pn

n p p pn

q a a ag
q a a ag

α α χ α ν α
α α χ α ν α

   − + − +
=    − − − −   

,n n n p
p= − Cg q a• From 

• Third component of tilt
p n p

pδ = − Ca a a

tilt 1 2
p pa a aδ χ ν≈ − (first-order approximation) 

Tilt angles are computed 
from accelerometers, GNSS, 
and azimuth 

( )1 2 1
3

1 cos sinn n p
p q q a

a
χ α α= + −

( )1 2 2
3

1 sin cosn n p
p q q a

a
ν α α= − +

• If 1 20n ng g= = (neglecting DOV is second-order effect on tilt error) 
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Tilt Error (3) 

• Taking differentials of the specific force components, 

( ) ( ) ( ) ( ) ( )
( )

1 1 1 2 2 2 1 1 1 2 2 2
tilt 1 2 32

3 3 3

w p p w p p w p p w p p
p p p

p p p

q a a q a a q a a q a a
a a a a

a a a
δ δ δ δ δ

− − − − − + −
= + −

• Tilt error can be written as  

1 1 2 2
tilt 1 2

3 3

w p w p
p p

p p
q a q aa a a

a a
δ − −

≈ + 1 1 2cos sinw n nq q qα α= +

2 1 2sin cosw n nq q qα α= − +

− where            are kinematic accelerations in the “wander-azimuth” frame 1 2,w wq q

• Assume ( ) ( ) ( )4 6 4
1,2 1,2 3 3 1,2, 10  mGal, 10  mGal, 10  mGalw p p p pq a a O a a Oν χ− = ⋅ ≈ =

− error in vertical accelerometer (gravimeter) is second-order for tilt correction 

− error in horizontal accels. can be 100 worse than tilt correction accuracy 

• In practice, tilt correction is subjected to appropriate filters; 
see (Olesen 2003) 
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Lever-Arm Effect 

− assume gravimeter is at center of mass of vehicle 

• Apply to kinematic acceleration derived from GNSS tracking 

• In the inertial frame: antenna gravimeter
i i i= +x x b

,i i b
b= Cb b− where bb = fixed antenna offset relative to gravimeter 

i
bC − obtained from gyro data 

− extract relevant component in particular frame 

• Numerical differentiation: ( )
2

gravimeter antenna2
i i id

dt
−x = x b

◦ n-frame: vertical component of                          gravimeter
n i
iC x h
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Scalar Gravimetry Equation 

− tilt error depends on accuracy of platform accelerometers 

− gravimeter measurement, f , includes various inherent instrument corrections 

− accuracy in      must be commensurate with gravimeter accuracy h

− where        is normal gravity at the normal height of       above the ellipsoid 
aQγ ′ aP′

− where f0 – g0 is the initial offset of the gravimeter reading from true gravity 

− where               is the gravity meter reading 3
pf a= −

( )Eötvös tilt DOV 0 0a aP Qg f h g a q f g∆ δ δ δ γ′ ′= − + + − − − −

• Final equation for the gravity anomaly at altitude point, aP′

− exact and sufficiently approximate formulas exist for normal gravity at aQ′
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IV. Overview of Airborne Gravimetry Systems 
 
• LaCoste/Romberg sea-air gravimeters 
 
• Other Airborne gravimeters 

National Geodetic Survey 
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• All gravimeters are single-axis accelerometers 

− mechanical spring accelerometers (vertical spring, horizontal beam) 

◦ manual or automatic (force-rebalance) nulling 

− vibrating string accelerometers 

− electromagnetic spring (force-rebalance) 

− torsion wire (horizontal beam, no nulling) 

• Instrumentation overview of scalar airborne gravimetry  

− LaCoste-Romberg instruments dominate the field 

− many other instrument types in operation or being tested 

Airborne Gravimeters 
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At University of Texas, Austin 
*https://web.archive.org/web/20080527061634/http://www.agu.org/sci_soc/lacoste.html 
Earth in Space Vol. 8, No. 9, May 1996, pp. 12-13. © 1996 American Geophysical Union; 
see also (Harrison 1995). 

“The gravity meters Lucien B. LaCoste invented revolutionized geodesy 
and gave scientists the ability to precisely measure variations in Earth's 
gravity from land, water, and space” J.C. Harrison (1996)*  

Lucien J.B. LaCoste (1908-1995) 

• Scientist 

• Inventor 

• Teacher 

• Entrepreneur 
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( )0 sin sink b mgaβ α− = 

− independent of α  → equilibrium at 
any beam position for a given g 

− independent of     → no change in spring 
length could accommodate a change in g 



LaCoste-Romberg Air-Sea Model S Gravimeter 

finite sensitivity infinite sensitivity 
g

• From (Valliant 1992): 

− zero-length spring: 0 0=

kbd mga⇒ =

− law of sines: sin sindβ α=

• Beam is in equilibrium if torque(spring) = torque(mg) 

d 

b 
a 

mg 



βα

damper 
O 

A 
exactly vertical 

( )0k − 

with damper 
g g∆+

 measure beam velocity! 
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(Inherent) Cross-Coupling Effect 

a 
θ

( )m g z+ 

mx

z

x

• Horizontal accelerations couple into the vertical movement of 
horizontal beam gravimeters that are not nulled 
− total torque on beam due to external 

accelerations: 

( )( )sin cosT ma x g zθ θ= + + 

• There is no cross-coupling effect for 
− force-rebalance gravimeters 

− vertical-spring gravimeters 

− it can be shown (LaCoste and Harrison 
1961) that the cross-coupling error is 

1 1
1 cos
2

xε θ ψ= 

where           are amplitudes of components of     and    , respectively, 
that have the same period and phase difference,  

x θ
ψ

1 1,x θ

2
1 11 , 0.1 m/s 90 mGalxθ ε= ° = ⇒ =− e.g., 
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LaCoste-Romberg Model S Sensor and Platform 

From: Instruction Manual, LaCoste and Romberg Model “S” Air-Sea Dynamic Gravimeter, 1998; with permission 

Stabilized 
Platform 

Outer Frame 

Dampers 

Interior Side View 

view of top lid 

Gyroscopes 

Accelerometers 
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LaCoste/Romberg TAGS-6 
(Turn-key Airborne Gravity System) 

http://www.microglacoste.com/tags-6.php 
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BGM-3 Gravimeter 

Fugro  WHOI Two BGM-3 gravimeters installed 
on the USCG ship Healy  https://www.unols.org/sites/default/files/Gravimeter_Kinsey.pdf 

• Bell Aerospace (now Lockheed Martin) 

− Model XI pendulous force-rebalance 
accelerometer 

− current needed to keep test mass in null 
position is proportional to acceleration 

induction 

(Seiff and Knight 1992); see also (Bell and Watts 1986) 
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Sea Gravimeter KSS31, Bodenseewerk Geosystem GmbH 

− force rebalance feedback system 
− highly damped output, ~ 3 minute average 

•http://www.bgr.bund.de/DE/Themen/MarineRohstoffforschung/Meeresforschung/Geraete/Gravimeter/gravimeter_inhalt.html 
•http://www.bgr.bund.de/EN/Themen/GG_Geophysik/Aerogeophysik/Aerogravimetrie/aerogravimetrie_node_en.html 

• Gravity sensor based on Askania vertical-spring gravimeter 

− sensor on a gyro-stabilized platform 

− Federal Institute for Geosciences and Natural Resources (BGR)  

− also used for fixed wing and helicopter gravimetry 

capacitive 
transducer 

tube 

spring 

damping 
unit 

permanent 
magnet 

thread Heyde, J. (2010) 
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(Krasnov et al. 2008) 

  

Chekan-A Gravimeter  

− cross-coupling effect minimized by double-beam reverted pendulums  

(Hinze et al. 2013) 

− evolutionary modifications: Chekan AM, “Shelf” (Krasnov et al. 2014) 

− gravity sensed by deflection of pendulum hinged on quartz torsion wire in viscous fluid 

− pendulum deflection: 0.3–1.5 ″/mGal; e.g., ±1° → ±10 Gal total range (0.36 ″/mGal) 

• Air-Sea gravimeter; CSRI* Elektropribor, St. Petersburg, Russia 

*Central Scientific & Research Institute 

(Stelkens-Kobsch 2005) 

Installation in test aircraft 

ht
tp

://
w

w
w

.g
ra

vi
on

ic
.c

om
/g

ra
vi

m
et

ry
.h

tm
l 
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Relative gravimeter Chekan in a cabin of AU 

Airborne Gravimetry on Airship Platform 

− test flight January 2014 

− reported in IAG Commission 2 Travaux 2015  

Airship AU-30 

 (http://rosaerosystems.com/airships/obj17) 
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http://eongeosciences.com/wp-content/uploads/2015/01/GT_2A.pdf 
(Canadian Micro Gravity) 

Airborne Gravimeter GT-2A 

√  √  

− vertical accelerometer of axial design with a test mass on spring suspension 
• Gravimeter system designed by Gravimetric Technologies (Russia) 

− photoelectric position pickup 
− moving-coil force feedback transducer 
− three-axis gyro-stabilized platform 
− large dynamic range 

(Gabell et al. 2004) 
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Sander Geophysics Ltd. AirGrav System 
• “Purpose-built” airborne gravimeter designed for airborne 

environment, not modified sea gravimeter 

− Schuler-tuned (three axis) inertially stabilized platform 
− three-accelerometer system; 

vertical accelerometer used as 
gravimeter 

− demonstrated success in vector 
gravimetry 

− advertize gravimetry on 
topography-draped profiles 

− Honeywell inertial navigation grade accelerometers (Annecchione et al. 2006, 
Sinkiewicz et al. 1997) 

http://www.sgl.com/news/Sander%20Geophysics%20-%20Antarctica.pdf  

− comparison tests over Canadian 
Rockies between AirGrav and 
GT-1A 

 (Studinger et al. 2008)  
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