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Summary. This paper introduces a new matrix computational approach to
the local determination of gravity gradients, convenient for comparing with
gradient signals from moving base gradiometer systems or calculating
topographic effects at instrument heights. The method represents a practical
alternative to the more conventional spherical harmonics formulation,
primarily global in nature, and it may be considered as an extension to other
previously used local representations, such as point masses. Important
characteristics of the analytical development outlined herein are its
conceptual simplicity and the possibility of obtaining at once, up to a certain
order n, and in an arbitrary Cartesian coordinate system, the symmetric
point gradient tensor of second rank.

1 Introduction

The determination of the fine structure of the Earth’s gravity field still remains one of the
most challenging problems of geodesy and geophysics. The repercussions which improved
knowledge of the geopotential would have on many practical civilian and military applica-
tions are difficult to overstate. Satellite navigation and altimetry, inertial navigation, Earth
and ocean physics, and important economic surveys, such as global assessments of petroleum
and mineral resources, are but a few of the areas promising great advancement, if knowledge
of high resolution gravitational disturbances should become available.

Currently, the most detailed Earth gravitational models are given through the coefficients
of spherical harmonic expansions up to degree and order 180 (Rapp 1981; Lerch et al.
1981). Consequently, resolution of horizontal features of approximately 1°x 1° (i.e. block
size of 110km) has been achieved. While important applications of earth models such as
the ones mentioned above should be recognized (Tscherning 1983), classical techniques
cannot provide an imminent extension of these series or appreciable improvements in our
knowledge of the shorter wavelength gravity field variations. New technology and methods
must be introduced to replace conventional ones. A significant effort is now centred around
the future Geopotential Research Mission (GRM) expected to fly in 1992, and the develop-
ment and implementation of new highly sophisticated hardware, such as superconducting
gravity gradiometers, probably to follow on the GRM.
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Spherical harmonics are ideally suited to depict the long-wavelength components of the
gravity field, and traditionally the only representation generally accepted. Several equations
for determining the attraction and its partial derivatives from the basic spherical potential
expansion have been published (Gulick 1970; Sitzman 1971; Pines 1973; Tscherning
1976a, b; Hotine 1969, p. 181). However, all the algorithms devised to implement these
equations numerically consume a significant amount of processor time, when gravity
gradients affected by local disturbances (primarily embedded in the high-degree coefficients)
are required. In this context, the reader may consider recently updated computer programs
with more efficient recursive algorithms discussed by Tscherning, Rapp & Goad (1983).
Finally, another argument frequently mentioned against a global spherical harmonics repre-
sentation is our current poor understanding of the exact signal-to-noise ratio characterizing
these high-degree potential coefficients.

Consequently, alternative methods for local representation of the gravity field have been
introduced to avoid some of the weaknesses of the spherical harmonics approach. Some
representative examples are sampling functions (Giacaglia & Lunquist 1971), point masses
(Weightman 1967; Needham 1970), surface densities (Kock 1970; Morrison 1971) and finite
elements (Junkins 1976 ; Meissl 1981).

Although abundant literature is available on the topic of possible improvements of the
Earth’s gravity field (surface gravity anomalies, etc.) from assumed gradiometry observations
(e.g. Rummel 1979; Jekeli 1983); nevertheless, only a few authors have discussed specifically
the comtribution of local gravity disturbances to all the components of the gravity gradient.
Besides the classical formulation used in the reduction of terrestrial torsion balance measure-
ments extensively referenced in Mueller (1964) and the modern use of spherical harmonics
(Chovitz, Lucas & Morrison 1973) or point masses for satellite gradiometry (Reed 1973)
passing through the recent applications of least-squares collocation techniques in kinematical
geodesy (Moritz 1971; Groten 1979; Hein 1981), very little emphasis has been given to the
practical modelling of the local second-rank gradient tensor at points of arbitrary height.
At a recent workshop sponsored by the NASA Geodynamics Branch, among several problem
areas in gravity gradiometry, data processing was expressly mentioned and the following
recommendation made: ‘Simulate the analysis of gravity gradiometer data to validate
processing strategies’ (Wells 1984). This paper may be considered to be a contribution along
these lines.

2 General background

In Soler “(1984) the matrix expansion of the gravitational attraction at any exterior point
P(X4, %, X3) of a body of mass M was given by
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where G is the constant of gravitation and 7 is the magnitude of the radius vector of P.
In general, the symbol (v) is used throughout this paper to denote the largest integer
<vand
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(i = jM (7)1 ()" 2K (ot (kD)< {x} dm
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Equation (2.1) represents in simplified matrix notation the three components of the
gravitational attraction at a point P with coordinates {X} referred to an arbitrary right-
handed Cartesian system (x, X, x3) with origin at Ox (see Fig. 1). The three coordinates
of the body’s centre of mass (CM) with respect to this frame are the components of the
column matrix {¢£}. Any point mass dm in the body will have coordinates {x} . The central
principal axes are denoted by Xopp 1=1, 2,3.

The more general nomenclature for tensors of inertia suggested by Hotine (1969, p. 165)
is adopted in this work, thereby departing from the conventional terminology presented in
most references, which is usually restricted only to second-rank tensors.

In matrix notation, inertia tensors of second, third and fourth rank will be defined here
respectively by

1] = f x} (<) dm = J (7] dm (2.4)
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The extension to higher rank inertia tensors, if desired, is easy to visualize. Consult Soler
(1984) for the explicit form of the above tensors as a function of the inertial integrals
(MacMillan 1930, p. 89) and the rules for transforming them under rotations.

Here, in general, every inertia tensor of odd rank is a 3 x 1 vector, the components of
which are three matrices, called ‘clusters’. Similarly, inertia tensors of even rank are
3 x 3 symmetric matrices of nine clusters. The contraction € of a tensor of rank # is another
tensor of rank 7 — 2. The contraction of inertia tensors of even rank is equal to the sum of
the three clusters forming the diagonal of the tensor. The contraction of inertia tensor of
odd rank is equal to the contraction of each of the three components. A tensor of rank n
may have a total of k successive contractions @* where k=(n/2). When the clusters are
matrices of 3 x 3 elements, then € and the standard symbol Tr (trace) are interchangeable.
The contraction of order zero by definition is the identity contraction (e.g. #O[1] = [ID.

As an example, one can apply contractions to the three inertia tensors described above,
as follows:

U =Tr[{] =1y +1pn +1s 2.7



366 T. Soler

Pix}
Xopy X3 /,,/;7"2
Xop,
Figure 1. Coordinate systems notation and configuration.

Tr{f}, Ly + gy + Isy
{1} = {Tr[lly} ={ 1o+ [oon + I3, (2.8)

Tr(]s Tyy3+ Ipp3+ I3
Gl = Ui+ ot [U]ss (2.9)
€ (U1 = €€ = Tr[I]yy + Tr[l]as + Tr[[]sa (2.10)

Consequently, the maximum possible contraction of inertia tensors of odd and even rank
are vectors and scalars respectively.

Also in Soler (1984) it was shown that

(A e = I = f U )" 25 (T {x})* dm
M

= {x}? (O+1)/2)—k (537K [inertia tensor of rank n] {x} M2 7K {x} . (2.11)

In equations (2.3) and (2.11) operations involving tensors of first rank (vectors) and general
inertia tensors of rank s are implicit. These operations follow matrix multiplication rules,

but ‘component by component’, similarly to the standard multiplication rules of element
by element. For example,

L] 7] (7115
E I = (=) Ul [Uas| {%}
sym (/]33
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3 The gradient matrix of the gravitational potential ¥
It is well known that the gradient matrix (gradient tensor of second rank) of the potential

V at P in an irrotational vector field can be expressed in any of the following forms (recall
that the gradient of a tensor of rank n is another tensor of rank n +1):
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The partial vector operator {3/0%} shown above always applies to the quantities to its right

contained over the horizontal bar.
Recalling from (2.11) that {%} {¢'};x = Fat the transpose of {f} is readily obtained

from (2.1)
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Then after taking partial derivatives with respect to the quantities depending on {%} in
equation (3.2), it is not difficult to show
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Further, by recognizing that

{3_-} = =1 (3.4)
ox

where [1] is the 3 x 3 unit matrix, one immediately obtains

) 3
{g}gk{x}f ={;{} A%+ S (1] (3.5

Moreover, from (2.11) and (2.3) it follows

{3} I = (n = 2K) f (B )™ 2R Yot x DR {x} dm = (n = 2k){ A k- (3.6)
ox) — i
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Thus, replacing the above in (3.3), after grouping terms and simplifying, one finally arrives at
d = /D 2(k—-n)—1

{—_} =03 ¥ —amnes I
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2(k — i .
x ﬂfnk [[1]+ - [J]}
4 .
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where the substitution {¥}{%} = [J] was implemented.

Equation (3.7) gives the full second rank gradient tensor of ¥ as a function of quantities
already known, such as the scalar %, and the vector {2#},%. Still to be explicitly defined
is the matrix {9/3%}{o#} 2, (i.e. the gradient of the vector { 7} )

The gradient of {X'},,, may be computed, first making use of (2.3)

{f}fﬂﬁf ({2} ) 2R 1 ({x o) {x) dm (3.8)
M

and then,

)

{a—)_c} {AH} e =(n—2k—1) fM ({2} {x})" 725 2({x} {xP* ] dm

=(n—2k— D)0 | (3.9)
where (see Appendix A)
[0 A o = {2} 1@ -2 (%} @ ¥ [inertia tensor of rank n] {%} /2 %D {3}, (3.10)

Notice that the matrix {8/0x } {o#}5, is a 3 x 3 zero matrix when n =2k + 1. Moreover
its substitution in (3.7) is not required when n = 2k; therefore equations (3.9) and (3.10)
need to be defined only for values of k& = (n/2).

4 The trace of the potential second-rank gradient tensor

In this section, primarily as a check of equation (3.7), Laplace’s condition will be proved.
In matrix notation, this condition can be written

%[{i}{%}] ) (g[{%} 7 t] -0 (4.1)

Recalling that
CH{EHA ) = CUA e 5)] = (2) 1} ke = Sk (4.2)
and, from (3.9) and (2.11)

d
%[{—_} 12 Hg_«] =(n—2k—1>J {= )7 2R 2 (xR dm
0x I

=(n—2k—1) S 1. (4.3)
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Consequently,

In k1= C [0 A |k

369

(4.4)

Therefore, taking contractions in equation {3.7) and substituting the equalities given

above, one arrives at

8 Y A ~2K)(n — 2k — 1
(g[{a—%}ﬁ]zG Z Z E2(n r]lc))+3 Tnk(_zkfnk +(l’l )(n )7

o (n/2)
=G 2 (Ank+Bnk)
n=0k=0
where
. 2(k—-n)—1
Ape=—12 ESCEEEN nk Pk
and

_ (n—-2k)(n—2k—1)
nk ~ 7201 -k)+1

Tore I, k+1-
By simple inspection, it follows immediately that in general
Ay o=Bnnp=0 foranyn.

Therefore, explicitly

2(k—n)—1

Aw=0; Aig=0; A0=0; Aa; A3p=0; Az Aw=0;, Aa; An s
Boo=0; Byo=0; Ba; Bu=0; Ba: B3u=0; Bao; Bas By = 0;
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Thus, substituting the corresponding values of 4, x+1 and B, from equations (4.6) above,

one has
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but from Kaula (1966, p. 6) it is known that

T _ (n—2k)(n -2k —-1) T 410
nk+1 " 2(k+l)(2(l’l‘k)‘l) nk- ( )

Therefore, after inserting (4.10) into (4.9) it is finally shown that equation (4.1) holds.

This proof of Laplace’s equation, using matrix notation, although obviously not the most
direct (see MacMillan 1930, p. 32), contrasts with the mathematical complexity required
by other recently suggested subindex notations (Grafarend 1980; Kleusberg 1984).

S First terms of the expansion of the gravitational potential second rank gradient tensor
5.1 ZERO-ORDER TERM

From equation (3.7) and for n = 0 and k = 0, it can be shown that

0 GM 3
{;}{f}é =-— [l - VI (5.1
X r

’:2
Use of this term alone assumes a point mass situated at the coordinate origin (see Hopkins
1973;Reed 1973; Jordan 1978).

5.2 FIRST-ORDER TERM

Forn=1,k=0

{%}g}_ﬁ=43§M ﬂ({x}f{s})[m -2 m]+ 57 | (5.2)

Consequently, as expected, if we choose the origin of the reference coordinate system at
the CM of the body, there is no contribution from the first-order term to the gradient
matrix of V.

5.3 SECOND-ORDER TERM

In this case n = 2 and k takes the values k= 0, 1. Therefore, from equation (3.7) after simple
matrix manipulation and simplifications,

G 7 ) )
{Ej}{f}’i:‘l}jﬂ({f}t[ﬂ{fc})[[l]*__;‘[J]}+2[J][1]+2[1][J]ﬂ
0x 2F 7
3G 5. A
+—2;;ﬂ<g[f] [m -2 [J]]umﬂ. (5.3)

5.4 THIRD-ORDER TERM

Now n =3 and k=0, 1. Thus
5G 9
{aix} {1y =- 37— ﬂ({x}f[{x} U] {x})[m -2 m]
SIHE U]+ 3L ] m]]



Gravity gradient matrix representation 371

56 T
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5.5 FOURTH-ORDER TERM
Limiting the explicit matrix expansion to the fourth-order term, now n=4and k=0, 1, 2
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6 Final general equation

A simplified general matrix equation valid for n> 0 can be written to replace (3.7) defining
{x}7' =72 {x}'in order to accommodate the case n =1

oo (n/2>2k_ —1
{ }{f}n—Gz Z (—2(,1—%1—3Tnk

n=0 k=0 7
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Notice that in practical applications one only needs to compute the matrix [8.¢" ], since

e = {EY [0 L{X} when n=2k or n=2k+1 (e k=(n/2)) (6.2)

and

I = €10 |y when n=2k or n=2k+1 (le. k=n/2). (6.3)

Consequently

GO A N [T1] = {2} [0 L { X} = F - (6.4)

Taking traces of (6.1), and using the above equations, Laplace’s condition immediately

follows.
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As an illustrative example, and in order to facilitate the understanding of the reader,
below are given as a function of the inertia tensors, the 3 x 3 matrices [d ], required
in the expansion to order n = 7 of the second-rank gradient tensor.

n=2
[05¢"]2,0 = [/] (6.5)
n=73
(05 15,0 = {x}* {11} (6.6)
n=4
(35 a0 = {x}'[[1]] {x} (6.7)
(058 1,1 = €[[1]] 6.8)
n=>5
[0 15,0 = (=} [{=F AN} {=} (6.9)
(015, = (=) (f{[[f]]} (6.10)
n=6
(04 16,0 = {Z} [{ZF [N} {F} {=} (6.11)
[ay{] o1 = (B €[l ]]]{56} (6.12)
[85¢ 16,2 = & [[I1]]] (6.13)
n=7
[0 )7,0 = LRV L7} L=} (LU=} {2} (6.14)
(0ot 17,1 = (P {=Y ¢ {[[[7111}]{=} (6.15)
(301 15,2 = {x}e? {{[[711]}- {0.16)

The general expression (6.1) of this section in conjunction with equation (3.10) provides
a novel matrix approach for computing the entire second-rank gradient tensor at any point
P in space.

In practical applications the local relief can be approximated by a discrete number of
finite elements (blocks) of arbitrary shape. The expansion depends upon the coordinates of
P and the inertia tensors of the element referred to some Cartesian coordinate system.
Incidentally, because the inertia tensors are functions of inertial integrals each element will
be characterized by its size and density. The final gradient tensor at P will be equal to the
sum of each individual contribution from all modelled elements.

For completeness, Appendix B recapitulates explicitly in matrix form the inertia tensors
of even rank up to 7 = 6 for a single homogeneous element of parallelepipedon shape.

The selection of element sizes and the maximum order of the expansion will depend
primarily on the desired resolution and the specific problem at hand (e.g. satellite versus
airborne gradiometry). Assume, for example, a typical terrain element (p = 2.65gcm )

of a height of 2km, and 2kmx2km base (approximately an equiangular block of
1'x1"). Then, the contribution of the expansion fourth order term given explicitly
by equation (5.5) to the vertical gradient 92V/9x% along the line %; = %, = 0 will be larger
than 1 EU (EU = Eotvos unit = 0.1 ugal m™!) when %3 < 2.67 km.



Gravity gradient matrix representation 373

However, the primary intention of this paper was restricted to describing the theory
without emphasizing any particular simulation applicable to specific problems. Thus, it is
left to the reader to decide on the best possible modelling and expansion, depending on the
availability of data and individual constraints.

7 Conclusions

The method proposed here introduces a new matrix formulation for post-observational
processing and interpretation of gravity gradiometry measurements obtained from moving
base gradiometer prototypes.

It is known that contrary to conventional gravity information, gravity gradiometry
signals are very sensitive to density contrast. If the nearest surface topographic effects
can be modelled with some reliability, the discrimination of certain underground geological
structures may become possible in geophysical explorations. This is due primarily to the
well established fact that higher derivatives provide higher resolution and are able to detect
variations due to buried mass anomalies, where standard gravity surveys fail (Hammer &
Anzoleaga 1975).

Generally speaking, every analysis performed to date for interpreting the direct effects
of non-uniform terrain on gravity gradients at airborne heights has been limited to two-
dimensional models. These essentially compute only the vertical gradient along a single
profile parallel to the flight line, and disregard the influence of nearby irregular topographic
masses, if any (Hammer 1976). The approach suggested in this paper, although strictly
deterministic in nature, has considerable flexibility, being adaptable to any type of
topography likely to be encountered in practice. The only requirements are a digitized
mean elevation data base, in some arbitrary vertical datum, and a set of assumed densities
(e.g. ice, seawater, crust, mantle). The sophistication of the model depends on the size of the
elements involved and the reliability of the densities.

Finally, it should be mentioned that the methodology described in this work, due to its
innovative matrix formulation, is most appropriate for deriving expressions involving higher-
rank gradient tensors (e.g. third, fourth) and their corresponding transformations due to
rotations between different coordinate systems (e.g. local, inertial, platform) at the point
of observation.
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Appendix A: the gradient of the vector {o'},,
It was shown before in (3.9) that
0 i
(ot == 2= ) [ 002 ) (o o
x) M
=(n— 2k = V[0 .

Let us determine the values inside the above integral, in which the exponents are positive.
This occurs when n + 2k or n = 2k +1, that is, for values of n which make k # (n/2).
As discussed in Section 3, these are the only values of n where the 3 X 3 matrix [8 ], is
actually required for practical applications.

Then, forn=2,%k=0

& (=} = [J1.
Forn=3,and k=0

x; [J] (/11
{F xPIJ] = (Fixy + Xoxy + Z3x3)[J] = {2Y<x, [J] ) ={x}{ [y = A}
x3[J] [V1s

Forn=4and k=0

U=} ) 1= ({8 [THED /] = (F3x1 +. .+ 2%5%5x0%3) []
=[]t 2555 [T = (B IVINE

Forn=4and k=1

Ux xDU= G +x3+x) U= [Ju + ezt [T =8I0

Similarly, if n=5and k=0,

(= {1’ ] = = R IN R

and forn=5,k=1

(= DA U] = (P D{RF ]} = {2 ¢ {[I/]1]} ete.

It then holds that in general and after integrating over the total mass of the body

As explained before, the above equation is defined only for values of # when k = (r/2).

Appendix B: inertia tensors (up to rank six) of a parallelepipedon element

Let us introduce at the mass centre (CM) of a homogeneous parallelepipedon element
of dimensions 2a, 2b, 2¢ and density p a Cartesian coordinate system (X, X, X3) as
shown in Fig. Al.
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Figure Al. Ccordinate system and parallelepipedon element relationships.

The inertial integrals of this particular element can be computed using the general
equation given in (MacMillan 1930, p. 89), namely

a2p b2q ch

M
Qp+1D(Q2q+1)(2r+1)

pf x3Px29x3" dx, dx, dx; =
v

where p, g and 7 are integers and M is the mass of the element. Clearly, because the planes
X1X,, X1X3 and X,x3 are planes of symmetry, the exponents of the variables x;, x, and x5
inside the integral will always be even numbers.

The matrix form of the non-zero inertia tensors (up to rank six) corresponding to the
element of Fig. Al are given below.

Inertia tensor of rank zero: it is very well known that the inertia tensor of rank zero is
the scalar M.

Inertia tensor of rank two:



Inertia tensor of rank four [{/]]:

L

Inertia tensor of rank six [[[/]]]:

sym

sym

Gravity gradient matrix representation

The inertia tensor of rank six may be written,

(71

(7 =

sym

(71
(/1)

(115

[UnnJ
[[1]5s

where the diagonal clusters are given by

M
(1152 =—,02
5

sym

15
=g 0

b2

sym

Lsym

B* 0

sym

b2

sym

Q

sym

b2

wn

_b2
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0
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sym




sym
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