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Themes
This webinar will overview original 
research highlighting:

• How the geoid currently changes 
in time in Alaska

• How the geoid has changed over 
the 20th century

• How NGS will validate geoid 
change predictions in Alaska

Predicted high-resolution geoid change rates in Alaska



Background: A New Geopotential Datum

• NGS is committed to replacing 
NAVD88 with a geoid-based 
geopotential datum by 2022

• In order to maintain accuracy 
requirements (1 cm) over the 
lifetime of the geoid, NGS has 
specified that the geoid must have 
time-dependent components

xGEOID19B Beta Geoid Model



The Geoid Monitoring Service (GeMS)

• Maintaining 1 cm geoid accuracy requires 
tracking where Earth’s changing mass distribution 
(water, ice, solid Earth) changes the geoid

• NGS has committed itself to tracking geoid 
change over time through a combination of:

• Satellite gravity measurements 

• Terrestrial gravity and GNSS campaigns

• Geophysical models

For an exhaustive overview of NGS’s 
geoid monitoring strategy, read: 



The GRACE and GRACE Follow-On Missions

• Gravity Recovery and 
Climate Experiment: Twin 
satellites that map changes 
in Earth’s gravity on a 
monthly basis by precisely 
tracking the distance 
between the satellites

• GRACE: 2002—2017

• GRACE-FO: 2018—
present 

GRACE Measurement Principle 

Images: NASA

GRACE Follow-On



GRACE and GRACE Follow-On
• GRACE solutions may be used to 

map mass change on Earth’s 
surface (expressed in equivalent 
water height) 

• GRACE solutions for Earth’s gravity 
can also be expressed in terms of 
discrete mass concentrations, or 
“mascons” 

• These solutions are a starting point 
for NGS’s dynamic geoid change 
models

Explore GRACE data: 

ccar.colorado.edu/grace



Geoid Change According to GRACE
• 2002—2016 GRACE geoid 

rates are currently the 
basis of NGS’s alpha 
dynamic geoid model, 
xDGEOID19

• Geoid change in North 
America is dominated by 
glacial isostatic adjustment

• Ice mass loss creates more 
pronounced gravity change 
in Alaska and Greenland

0 mm yr-1

-0.25 mm yr-1

+0.0 mm yr-1

+0.5 mm yr-1

-1.5 mm yr-1

-4 mm yr-1

NASA GSFC Global Mascons v2.4 
Contour interval: 0.25 mm yr-1

2002-2016 Geoid Change Rate



A Closer Look at Alaska
• Geopotential models from 

GRACE enable us to predict

• Mass change (in 
equivalent water height)

• Geoid change

• Gravity change

• Vertical crustal motion 
(depending on model 
assumptions)



Resolution Limits
• Geoid change depends on both the 

scale and extent of gravity change or 
mass change 

• Geoid change in Alaska is primarily 
attributable to ice mass loss on scales 
below GRACE’s resolution limits

• Therefore, GRACE geoid change 
models may underestimate the 
amplitudes of geoid change in 
Alaska

Relationship between extent and magnitude of gravity 
change required for 1 cm geoid change and (NOS NGS TR69)

Rates of ice mass change in Alaska measured at short 
scales by airborne lidar, (Larsen et al. 2015)

(1 meter water equivalent ≈ 42 μGal)



Enhanced GRACE Solutions
GRACE solutions can trade temporal resolution for improved spatial 
resolution (~100 km) by solving for geoid trends instead of monthly solutions

-1.5 mm yr-1 -2.0 mm yr-1 -1.9 mm yr-1

These solutions confirm truncation errors hide at least 0.5 mm yr-1 of geoid change



Going Deeper: Hybrid Geoid Change Models

• While little, if any data for high-resolution 
gravity change in Alaska exists, we can 
predict concentrated mass change due 
to ice melt in Alaska

• If we know the distribution of mass 
change on Earth’s surface, we can 
predict the instantaneous effect on

• Geoid change

• Gravity change

• Elastic crustal deformation (uplift)

Rates of ice mass change in Alaska measured at short 
scales by airborne lidar (Larsen et al. 2015)



Additional Height Change Data: ICESat/ICESat-2

• Space-based laser altimetry provides spot 
measurements of elevation change across a 
long timespan

• These measurements confirm high rates of 
ice mass loss 

2003—2019 ICESat/ICESat-2 Elevation Rates 
ICESat ICESat-2



Extrapolating Ice Elevation Change
• Glacier elevation rates 

may be predicted by 
elevation, glacier type, 
and catalog regions

• Fitting simple elevation
—height relationships 
to the elevation rates 
enables extrapolation 
of measured height 
rates using a digital 
elevation model



Altimetry-based Mass Loss Rates
• Observed elevation rates may 

be extrapolated over the 
glaciated area of Alaska using 
a DEM

• The high-resolution 
components of these models 
may be combined with low-
resolution GRACE rates to 
predict mass change rates at 
full resolution from ice mass 
loss and unmodeled processes



High-Resolution Geoid Change Predictions 

GRACE provides large scale information while altimetry provides short-
scale information



Altimetry: Added Value
GRACE 

Solutions 

Resolution: 
~100-200 km

GRACE 
Solutions 

+ 
Airborne 
Altimetry 

Resolution: 
~50 km

-1.5 mm yr-1 -2.0 mm yr-1 -1.9 mm yr-1

-3.4 mm yr-1-2.7 mm yr-1 -2.7 mm yr-1



Validation

• Our models show that GRACE monthly solutions underestimate more than 
1 mm yr-1 of geoid change, which demonstrates that enhancements are 
needed to maintain an accurate geopotential datum

• However, these models have no external feedback and only predict geoid 
change signals

• We need high-resolution data from Alaska to verify these high-resolution 
predictions



Validation Questions

• Can we observe present-day geoid change in the field with terrestrial 
gravity measurements?

• Can we observe predicted geoid change signals by revisiting historical 
observation sites?

• Does geoid change introduce error to our static gravity field models?



Historical Gravity Measurements in Alaska
• Gravity measurements in Alaska were first 

aggregated by Thiel et al. (1958). Many of 
these measurements were performed 
mostly along roads and included NGS-
cataloged benchmarks. 

• The USGS and partners performed tens 
of thousands of subsequent 
measurements enabled by helicopters 
and riverboats in the 1960s and 1970s

• Additional surveys since contribute to 
more than 90,000 present-day terrestrial 
gravity holdings

Thiel et al.  
(1958)

Barnes et al. 
(1976)



Post-1964 Earthquake Gravity and Leveling

• The 1964 Alaska Earthquake caused 
elevations in Alaska to change by up 
to two meters and may have resulted 
in 1 cm geoid change (Jacob et al., 
2012)

• The USGS and US Coast & Geodetic 
Survey releveled Alaska and observed 
precise relative gravity profiles

• These elevation and gravity profiles 
preserve the state of the geoid at a 
1964—1965 epoch

Right: Post-earthquake 
relative gravity profiles

Right: Status of leveling 
in Alaska ca. 1965



Deflections of the Vertical
• Deflections of the vertical (DOV) describe 

the slope of the geoid, or the amount by 
which geodetic latitude and longitude differs 
from latitude and longitude as measured 
astronomically

• The Coast & Geodetic Survey observed 
deflections of the vertical at nearly 100 sites 
in Alaska to augment horizontal control 
between 1890 and 1960, often within 
±0.2” (1 mm/km)

• Some of these DOV sites were situated 
near glaciers and may reveal several tenths 
of an arcsecond of geoid change

Missing Ice Mass Old Geoid

New Geoid

Old 
Plumb 
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New 
Plumb 
Line
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Line Old 
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LineHorizontal Gravitational Attraction

Stars



Predicting Past Geoid Change
• Aerial stereo photos provides a key source of 

evidence of glacial elevation change over the 
past 70 years

• Echelmeyer et al. (2002) compared airborne 
lidar data captured in the 1990s with aerial 
photogrammetry contours captured starting in 
1950

• Measured elevation changes can reach 
hundreds of meters

Detail of USGS Columbia 
Glacier Topographic Map (1963)



Predicting Past Geoid Change

• The Echelmeyer results 
may be handled in the 
same manner as present 
day velocities to obtain 
1954—1996 geoid 
change

• These results suggest 
geoid change of up to 8 
cm across this interval 



GeMS-VS High-Resolution Surveys
• This “GeMS Validation 

Survey” preliminary survey 
design collects dense (~20 
km) profiles of gravity and 
GNSS elevations

• Observations at historical 
sites will constrain past 
geoid change

• Survey profiles will isolate 
ice melt load centers

From “NGS’s Geoid Monitoring Service (GeMS)” September 2019 Webinar 



Measuring Past Geoid Change 
• Combining both approaches 

enables predictions of geodetic 
change across 1954—2020 
baseline

• Observed gravity and precise 
elevations may be compared 
with historical (ca. 1940—1970) 
measurements



Measuring Current Geoid Change 
• Annual-to-biennial revisits of 

this profiles will enable 
validation of present-day 
rates of geopotential change

• Geoid change will be 
reflected in differential gravity 
and elevation change rates



Temporal Gravity Signals in the Static Geoid?
Colors: Geoid differences after GRAV-D airborne data additions 
Contours: Predicted 1954—2010 geoid change• NGS geoid models are a mix of 

20th century terrestrial gravity 
and modern satellite and 
airborne models (ca. 2010)

• Most gravity data in Alaska was 
collected before 1980

• The difference between airborne 
and terrestrial-only solutions 
(right) should, in part, reflect 
geoid change



Conclusions

• Ice mass loss in southern Alaska changes the geoid by 1-3 cm per decade

• Satellite gravity solutions can only capture the low-resolution components 
of geoid change in Alaska and can miss more than 1 cm per decade of 
geoid change

• The geoid has likely changed by more than 10 centimeters since the 1950s

• On-the-ground profile measurements of gravity, elevation, and deflections 
of the vertical will capture geoid change, both past and present 



More Information

• NOAA Technical Report NOS NGS 69: A Preliminary Investigation of the 
NGS's Geoid Monitoring Service (GeMS)

• September 2019 NGS Webinar “NGS’s Geoid Monitoring Service (GeMS)” 

• xGEOID19, NGS’s beta geoid model with dynamic components 
https://beta.ngs.noaa.gov/GEOID/xGEOID19/ 

Questions? Contact Me: 
Ryan Hardy, PhD 

ryan.hardy@noaa.gov

https://beta.ngs.noaa.gov/GEOID/xGEOID19/
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