STATE PLANE COORDINATES by AUTOMATIC DATA PROCESSING

PUBLICATION 62-4

by Charles N. Claire Geodtist (retired)

> 1968 1986 (Reprint)

U.S. DEPARTMENT OF COMMERCE Alexander B. Trowbridge, Secretary

EVIRONMENTAL SCIENCE SERVICES ADMINISTRATION Robert M. White, Administrator

COAST AND GEODETIC SURVEY James C. Tison, Jr., Director

Foreword

The plane coordinate system used in this State is based on the Lambert conformal conic projection with two standard parallels for each zone. The tables in this publication are to be used for the conversion of geographic positions to plane coordinates or plane coordinates to geographic positions. The constants of the projection are listed with the tables.

These tables can be used with machine or hand-held electronic calculators. For more sophisticated hand-held electronic calculators and large computers, formulas given in <u>Coast</u> <u>and Geodetic Survey Publication</u> 62-4, State plane coordinates by automatic data processing, revised 1973, should be used. This document is sold by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, stock no. 003-002-00109-4.

The following formulas and sample computations show the general methods for computing either type of coordinates:

Plane Coordinates from Geographic Positions

 $x = R \sin \theta + C$ $y = R_b - R \cos \theta$

where

Grid azimuth = geodetic azimuth - θ + second term

R is the radius for the latitude of the station,

R_h is a constant for a zone,

- θ is the mapping angle for the longitude of the station,
- C is the value of x assigned to the central meridian for a zone.

PREFACE

This publication has been prepared to meet continuing requests from public and private organizations for information for computing state plane coordinates on electronic data processing equipment. The necessary equations and constants for the various states and territories are included in this publication. However, no programming information is included. since there are many different types of equipment now in use and new models are constantly being developed. Anyone familiar with the basic trigonometric functions and his particular type of equipment should be able to program the computation with the information contained in this publication.

For valuable technical assistance in the preparation of this publication. the author wishes to thank Lansing G. Simmons, Chief Geodesist, Geodesy Division: Buford K. Meade, Chief, Triangulation Branch, Geodesy Division: Rosemary E. Riordan, Chief, Programming Branch, Electronic Computing Division: and other members of the Geodesy Division.

CONTENTS

PREFACE	are
INTRODUCTION	1
LAMBERT PROJECTION	, 2
Forward Computation	3
Formulas	ว
Example	0 1
Inverse Computation	۲ ۶
Formulas	6
Example	-
TRANSVERSE MERCATOR PROJECTION	· ·
Forward Computation	9
Formulas	9
Fyample	9
Inverse Computation	10
Formulae	10
Fyample	13
ALASKA PROJECTION ZONES 2 TO 0	14
Furward Computation	17
Formulae	11
Formulas	14
	18
Inverse Computation	21
r ormulas	21
Example	22
ALASKA PROJECTION, ZONE I	25
Forward Computation	25
Formulas	25
Example	26
Inverse Computation	28
Formulas	28
Example	29
PUERTO RICO, VIRGIN ISLANDS, AND ST. CROIX PROJECTION	33
SAMOA PROJECTION	34
GUAM PROJECTION	35
Bibliography	40
Appendix	41
TABLE OF CONSTANTS	55

INTRODUCTION

This publication contains tables and formulas for computing state plane coordinates by electronic data processing equipment. There are four different types of projection used in the plane coordinate systems of the United States and its territories. They are the Lambert conformal conic, transverse Mercator, oblique Mercator, and approximate azimuthal equidistant projections. These are all based on the Clarke Spheroid of 1866. The plane coordinates in all the projections. except the one used for Guam, are in U.S. Survey Feet (one U.S. Survey Foot equals 1200/3937 meter exactly).

• For convenience in computing coordinates by desk calculator. projection tables were computed and published for the different state systems except Alaska. These tables contain the factors most difficult to compute. namely the radii of the parallels for the Lambert projection and values of y on the central meridian for the parallels on the transverse Mercator projection. These are tabulated at intervals of one minute of latitude. In Alaska, the published plane coordinates for $2^{1/2}$ -minute intersections of meridians and parallels are used for converting geographic positions to plane coordinates and vice versa.

The formulas in this publication are the same as the ones used in computing the projection tables. This will insure that coordinates computed by means of the formulas will agree as closely as possible with coordinates computed with the use of the plane coordinate projection tables.

The theory of the various projections is not included in this publication. The essentials of the different projections are discussed separately in the text which follows. The equations for computing plane coordinates from geographic positions and the inverse (computing geographic positions from plane coordinates) are given under the appropriate heading. An explanation of the constants and their derivations are given in the appendix. The constants for the various zones are listed in tabular form at the end of this publication.

Although zones 2 through 9 in the Alaska plane coordinate system are on the transverse Mercator projection, the formulas for these zones are different from those used in the other states and are listed separately from them. Zone 1 of the Alaska plane coordinate system covers southeast Alaska and is on an oblique Mercator projection. The plane coordinate systems for Puerto Rico, Virgin Islands, St. Croix, and American Samoa are computed on the Lambert conformal conic projection and use the same equations that are used for the states using that type of projection. The plane coordinate system for Guam is based on an approximate azimuthal equidistant projection. A separate projection has not been designed specifically for the District of Columbia. Within the District the plane coordinate projections for Maryland or Virginia may be used.

An arbitrary constant is added to all x' values (x' being the distance from the central meridian, + to the east, - to the west) to keep all x coordinates positive. If this arbitrary constant is not large enough, a point too far west of the central meridian can have a negative x value which is perfectly all right. Cases of this type actually exist in Florida on Dry Tortugas, and in Puerto Rico on Mona Island. In Maine, Monhegan Island is south of the design latitude of the east zone in which the island is located. Its y value is therefore negative. Here again, the fact that y is negative does not mean that it is incorrect. If any points are computed which are too far to the west of the central meridian or south of the lowest parallel of latitude for which the coordinate zone was intended, valid negative coordinates may be obtained, and can be used as long as the algebraic sign is taken into consideration.

Since 1957, an electronic computer has been used for mass computation of plane coordinates, using the formulas in this publication. The plane coordinates of the intersections of meridians and parallels in the United States, excluding Alaska and Hawaii, at intervals of $2^{1/2}$ minutes were computed previous to 1957 on more primitive data processing equipment, using the basic projection tables and essentially the same procedures as used with desk calculators.

State coordinates were originally computed from geographic positions rounded to three decimal places in seconds—equivalent to about 0.1 foot. Thus, azimuths and lengths, either geodetic or grid, could not be precisely determined by inverse computation between points close together.

This situation has been rectified by rounding geographic positions to 4, or even 5, decimal places in seconds which permits much greater precision in azimuth and length determination by inverse computation using either geographic positions or plane coordinates.

Owing to the limited number of terms used in converting geographic positions to plane coordinates, the values of the plane coordinates are not defined as precisely as they might be in an *absolute* sense. But no significant harm is done since the effect of the omitted terms is virtually the same on all coordinates in a limited area: thus, in a *relative* sense, the plane coordinates are well defined.

LAMBERT PROJECTION

The Lambert projections used in the plane coordinate systems of the United States are Lambert conformal conic projections with two standard parallels. The projection for American Samoa is a Lambert conformal conic projection with one standard parallel. The formulas given are adaptations of those used originally in computing the projection tables by which all of the plane coordinates were computed by desk calculator before 1957.

These equations are not the only ones that can be used in computing Lambert coordinates. They may not even be the best. However, they yield coordinates which check values computed using the projection tables within a hundredth of a foot (or at most two hundredths).

FORWARD COMPUTATION

Formulas. – The formulas for computing coordinates from geographic positions follow:

 ϕ = latitude of station λ = longitude of station

s 101.27940 65{ $60(L_7 \phi') + L_8 \phi'' + [1,052.89388 2$

 $(4.48334 \ 4 \ 0.02352 \ 0 \ \cos^2 \phi) \ \cos^2 \phi] \ \sin \phi \ \cos \phi\}$

(ϕ' is the degrees and minutes of ϕ expressed in whole minutes) (ϕ'' is the remainder of ϕ in seconds)

$$R \quad L_3 + sL_5 \left\{ 1 + \left(\frac{s}{10^8}\right)^2 \left[L_9 \quad \left(\frac{s}{10^8}\right) L_{10} + \left(\frac{s}{10^8}\right)^2 L_{11} \right] \right\}$$

 $\theta^* = L_6(L_2 - \lambda)$ (θ and λ are in seconds)

*In Alaska, zone 10, for stations in east longitude $\theta = L_d \lambda - 662.400.00000$ (east λ entered with positive sign).

278-186 O-68-2

 $x = L_1 + R \sin \theta$ $y = L_4 - R + 2R \sin^2 \frac{\theta}{2}$

Convergence = θ Scale factor = k

$$k = \frac{L_6 R (1 - 0.00676 \ 86580 \ \sin^2 \phi)^{1/2}}{20,925,832.16 \ \cos \phi}$$

The value of θ will not be greater than 5° 07' except in Alaska, zone 10, where it will not be greater than 9° 34'.

The constants (L's) are listed for the various states and zones at the end of this publication. The rectifying latitude of the central parallel is divided into two parts, L_7 and L_8 . The degrees and minutes in whole minutes are represented by L_7 . The remainder in seconds is represented by L_8 . This separation is made because the equations were designed for an electronic computer which had a fixed word capacity of only 10 figures and the rectifying latitude expressed in seconds would be 11 figures.

Sample computations to help clarify the equations and to indicate the number of decimal places to carry in the different terms follow.

Example.—The computation of the plane coordinates of a point in zone 10 of the Alaska plane coordinate system is given as an example.

Given: Latitude, $\phi = 54^{\circ} 27' 30.00000$ Longitude, $\lambda = 164^{\circ} 02' 30.0000$ W (= 590,550.00000)

Problem is to compute:

 $\begin{pmatrix} x \\ y \end{pmatrix}$ State plane coordinates Convergence, θ Scale factor, k

From the table of constants:

 $\phi'' = 30.00000$

 $L_{1} = 3.000,000,000$ $L_{2} = 633,600,00000$ $L_{3} = 15,893,950,36$ $L_{4} = 16,564,628,77$ $L_{5} = .99984,80641$ $L_{6} = .79692,23940$ $\phi' = 60 \times 54 + 27$ = 3.267 $L_{7} = 3.161$ $L_{8} = 47.87068$ $L_{9} = 3.79919$ $L_{10} = 5.91550$ $L_{11} = 44$

 $\sin \phi = 0.81369\ 30040$

$$\cos \phi = 0.58129 \ 48436$$

$$s = 101.27940\ 65\{60(3,161-3,267) + 47.87068$$

- 30.00000 + [1,052.89388 2 - (4.48334 4
- 0.02352 0 × 0.58129 5²) × 0.58129 48436²] × 0.81369 30040
× 0.58129 48436}
= - 591,960.9632
$$R = 15,893,950.36 + (-591.960.9632)(0.99984.80641) \int_{1}^{1}$$

$$+ \left(\frac{-591,960.9632}{10^8}\right)^2 \left[3.79919 - \left(\frac{-591,961}{10^8}\right) \times 5.91550 + \left(\frac{-591,961}{10^8}\right)^2 \times 44\right]\right\}$$

$$= 15,893,950.36 - 591,871.0231 [1+ 0.00003 50417 8(3.79919 + 0.03501 7 + 0.00154 2)]= 15,301,999.7826
$$\theta = 0.79692 23940(633,600.00000 - 590,550.00000)= + 34,307.50906 17= + 9° 31'47.50906 17sin $\theta = + 0.16556 16538 58$ sin $\frac{\theta}{2} = 0.08306 79189 55$
 $x = 3,000,000.0000 + 15,301,999.7826(+ 0.16556 16538 58))$
= 5,533,424.3913 feet$$$$

y = 16,564,628.77 - 15,301,999.7826+ 2 × 15,301,999.7826 × 0.08306 79189 55² = 1,473,805.1278 feet

Convergence = θ

=+9° 31′47″.50906

Scale factor = k

 $k = \frac{0.79692\,23940 \times 15,301,999.78(1 - 0.00676\,86580 \times 0.81369\,30040^2)^{1/2}}{20,925,832.16 \times 0.58129\,48436}$

 $=\frac{12,167,150.75}{12,164,078.33}$ $= 1.00025\ 26$

 $\omega = \omega' + \omega'$

INVERSE COMPUTATION

Formulas.—Formulas for computing geographic positions from plane coordinates follow:

$$\theta = \arctan \frac{x - L_1}{L_4 - y}$$
$$\lambda^{**} = L_2 - \frac{\theta}{L_6}$$

(θ and λ are in seconds)

$$R = \frac{L_4 - y}{\cos \theta}$$

$$s_1 = \frac{L_4 - L_3 - y + 2R \sin^2 \frac{\theta}{2}}{L_5}$$

$$s_2 = \frac{s_1}{1 + \left(\frac{s_1}{10^8}\right)^2 L_9 - \left(\frac{s_1}{10^8}\right)^3 L_{10} + \left(\frac{s_1}{10^8}\right)^4 L_{11}}$$

$$s_3 = \frac{s_1}{1 + \left(\frac{s_2}{10^8}\right)^2 L_9 - \left(\frac{s_2}{10^8}\right)^3 L_{10} + \left(\frac{s_2}{10^8}\right)^4 L_{11}}$$

$$s = \frac{s_1}{1 + \left(\frac{s_3}{10^8}\right)^2 L_9 - \left(\frac{s_3}{10^8}\right)^3 L_{10} + \left(\frac{s_3}{10^8}\right)^4 L_{11}}$$

$$\omega' = L_7 - 600 \qquad (\text{degrees and minutes of } \omega \text{ in whole minutes})$$

$$\omega'' = 36,000 + L_8 - 0.00987 36755 53 s \qquad (\text{remainder of } \omega \text{ in seconds})$$

**In Alaska, zone 10, if λ is greater than 180° it should be subtracted from 360° to give the proper east longitude.

 $\phi' = L_7 - 600$ (degrees and minutes of ϕ in whole minutes) $\phi'' = \omega'' + [1,047.54671 \ 0 + (6.19276 \ 0$

 $+0.05091 \ 2 \cos^2 \omega$) $\cos^2 \omega$] sin $\omega \cos \omega$

(remainder of ϕ in seconds)

 $\phi = \phi' + \phi''$

Example.—An example of the computation of latitude and longitude from plane coordinates follows. The constants of the equations are the same as the ones listed for the computation of plane coordinates from a geographic position.

Given: x = 5,533,424.3913 feet $\gamma = 1,473,805.1278$ feet To compute: Latitude $(=\phi)$ Longitude (= λ) $\theta = \arctan \frac{5,533,424.3913 - 3,000.000.0000}{16,564.628,77 - 1.473.805.1278}$ $= \arctan + 0.16787 84704 78$ $= +9^{\circ} 31' 47''_{5}50906 13$ = +34.307.50906 13 $\cos \theta = 0.98619\ 94416\ 81$ $\sin \frac{\theta}{2} = 0.08306$ 79189 54 $\lambda = 633,600.00000 - \frac{+34,307.50906 \ 13}{0.79692 \ 23940}$ = 590, 550".00000 $= 164^{\circ} 02' 30'' 00000$ $R = \frac{16.564,628.77 - 1,473,805.1278}{0.98619.94416.81}$ = 15.301.999.7826

$s_1 = \frac{16,564,628,77 - 15,893,950,36 - 1,473,805,1278 + 2 \times 15,301,999,7826 \times 0.08306,79189,54^2}{0,00004,90044}$
0.99984 80641 = - 502 040 5206
$s_{2} = \frac{-592,040.5296}{1 + \left(\frac{-592,040.53}{10^{8}}\right)^{2} \times 3.79919 - \left(\frac{-592,040.53}{10^{8}}\right)^{3} \times 5.91550 + \left(\frac{-592,040.53}{10^{8}}\right)^{4} \times 44}$
=-591,960.94
$s_1 =$
$1 + \left(\frac{-591,960.94}{10^8}\right)^2 \times 3.79919 - \left(\frac{-591,960.94}{10^8}\right)^3 \times 5.91550 + \left(\frac{-591,960.94}{10^8}\right)^4 \times 44$
= - 591,960.96
- 592,040.5296
$1 + \left(\frac{-591,960.96}{10^8}\right)^2 \times 3.79919 - \left(\frac{-591,960.96}{10^8}\right)^3 \times 5.91550 + \left(\frac{-591,960.96}{10^8}\right)^4 \times 44$
=-591,960.9633
$\omega' = 3,161 - 600$
=2,561'
$\omega'' = 36,000.00000 + 47.87068 - 0.00987 \ 36755 \ 53(-591,960.9633)$
=41,892.70117
$\omega = 2.561' + 41.892''.70117$
$=42^{\circ} 41' + 11^{\circ} 38' 12''.70117$
= 54° 19'12".70117
$\sin \omega = 0.81228 \ 91544$
$\cos \omega = 0.58325 49439$
$\phi' = 3,161 - 600$
=2,561'
$\phi'' = 41,892.70117 + [1,047.54671 0 + (6.19276 0 + 0.05091 2)$
× 0.58325 494²) × 0.58325 494²] × 0.81228 91544 × 0.58325 49439
= 42,390.00000
$\phi = 2,561' + 42,390''.00000$

 $=42^{\circ} 41' + 11^{\circ} 46' 30'' 00000$

54° 27'30″00000

8

TRANSVERSE MERCATOR PROJECTION

The formulas used for the transverse Mercator projections for the state plane coordinate systems, excepting those for Alaska, are not strictly exact. However, they are sufficiently exact for the purpose intended. The absolute values of the coordinates of a point may not be quite correct, but the differences between stations in any particular area will be sufficiently correct for all practical purposes. The computation of plane coordinates of all points computed before the appearance of the electronic computer was by a logarithmic method and later a machine method based on the logarithmic method.

Therefore, the following equations are based on the logarithmic method of computation, so that the original plane coordinate computations can be reproduced as closely as possible.

FORWARD COMPUTATION

Formulas. – The following formulas are used for computing plane coordinates from geographic positions.

 $\phi =$ latitude of station

 $\lambda =$ longitude of station

$$S_{1} = \frac{30.92241}{(1 - 0.00676 \ 86580 \ \sin^{2}\phi)^{1/2}} \bigg[T_{2} \\ -\lambda - 3.9174 \left(\frac{T_{2} - \lambda}{10^{4}} \right)^{3} \bigg] \qquad (\lambda \text{ in seconds})$$
$$S_{m} = S_{1} + 4.0831 \left(\frac{S_{1}}{10^{5}} \right)^{3} \\ x = T_{1} + 3.28083 \ 333 \ S_{m}T_{5} + \left(\frac{3.28083 \ 333 \ S_{m}T_{5}}{10^{5}} \right)^{3} T_{6}$$

 $(T_1 \text{ and } x \text{ will be in the millions in New Jersey; } x \text{ may be in the millions in certain other states.})$

$$\phi_1 = \phi + \frac{25.52381}{10^{10}} S_m^2 (1 - 0.00676 \ 86580 \ \sin^2 \phi)^2 \tan \phi \ (\phi \text{ in seconds})$$

9

$$\phi_{2} = \phi + \frac{25.52381}{10^{10}} S_{m}^{2} (1 - 0.00676\,86580\,\sin^{2}\phi_{1})^{2} \tan\phi_{1}$$

$$y = 101.27940\,65\,T_{5}\,\{60(\phi' - T_{3}) + \phi'' - T_{4} - [1,052.89388\,2 - (4.48334\,4 - 0.02352\,0\,\cos^{2}\phi_{2})\,\cos^{2}\phi_{2}]\sin\phi_{2}\cos\phi_{2}\}$$

$$\{\phi' \text{ is degrees and minutes of }\phi_{2} \text{ in whole minutes}\}$$

$$\{\phi'' \text{ is the remainder of }\phi_{2} \text{ in seconds}\}$$

$$\Delta \alpha = (T_2 - \lambda) \left[\sin \frac{\sqrt{-\gamma_2}}{2} + \frac{1.9587}{10^{12}} (T_2 - \lambda)^2 \sin \frac{\phi + \phi_2}{2} \cos^2 \frac{\phi + \phi_2}{2} \right] \qquad (\lambda \text{ in seconds})$$

$$k = T_5 \left[+ \frac{(1 + 0.00681 \ 47849 \ \cos^2 \phi)^2}{881.74916 \ 2 \ T_5^2} \left(\frac{x - T_1}{10^6} \right)^2 \right]$$

The constants (T's) are listed for the various states and zones at the end of this publication. The rectifying latitude of the latitude of the origin is divided into two parts, T_3 and T_4 . The degrees and minutes in whole minutes are represented by T_3 . The remainder in seconds is represented by T_4 . This separation is made because the equations were designed for an electronic computer which had a fixed word capacity of only 10 figures and the rectifying latitude expressed in seconds would be 11 figures.

Sample computations to help clarify the equations and to indicate the number of decimal places to carry in the different terms follow.

Example.—The computation of the plane coordinates of triangulation station *Indian* 1947 in the west zone of Idaho is given as an example.

Given: Latitude, $\phi = 48^{\circ} 07' 50''.94100$ Longitude, $\lambda = 116^{\circ} 22' 02''.59200 (= 418,922''.59200)$

Problem is to compute:

 $\begin{cases} x \\ y \\ y \\ \end{cases} State plane coordinates \\ Convergence, \Delta \alpha \\ Scale factor, k \end{cases}$

From the table of constants:

 $T_1 = 500.000.000$ $T_4 = 18.35156$ $T_2 = 416.700.00000$ $T_5 = .99993 33333$ $T_3 = 2.491$ $T_6 = .38062 27$

$$\begin{aligned} \sin \phi &= 0.74467\ 0637\\ \cos \phi &= 0.66743\ 21255\\ \tan \phi &= .11572\ 489\\ &\qquad \frac{30.92241\ 724 \times 0.66743\ 21255}{-\ 0.00676\ 86580 \times 0.74467\ 06371^2)^{1/2}} \left[416.700.0000\\ &\qquad 418.922.59200 - 3.9174\ \left(\frac{416.700.000 - 418.922.592}{10^4}\right)^3 \right]\\ &= \frac{20.63861\ 466}{0.99812\ 15089} \left[-2.222.59200 - 3.9174\ \left(\frac{-2.222.592}{10^4}\right)^3 \right]\\ &= -45.956.6613\\ &\quad -45.956.6613\\ &\quad -45.956.6613 + 4.0831\ \left(\frac{-45.956.6613}{10^5}\right)^3\\ &= -45.957.0576\\ x &= 500.000.000 + 3.28083\ 333(-45.957.0576)\ (0.99993\ 33333)\\ &\quad +\left(\frac{3.28083\ 333(-45.957.0576) \times 0.99993\ 33333}{10^5}\right)^3 \times 0.38062\ 27\\ &= 500.000.000 - 150.767.3945 - 1.3044\\ &= 349.231.301\ feet\\ \phi_1 &= 173.270.94100 + \frac{25.52381}{10^{10}}\ (-45.957.0576)^2\ (1\\ &\quad -0.00676\ 86580 \times 0.74467\ 064^2\)^2 \times 1.11572\ 489\\ &= 173.270.94100 + \frac{25.52381}{10^{10}}\ (-45.957.0576)^2\ (1\\ &\quad -0.00676\ 86580 \times 0.74468\ 995^2\)^2 \times 1.11578\ 987 \end{aligned}$$

173.270. 94100 + 5.39075 9 × 1.10742 90

= 173.276.91088

278-186 O-68-3

 $\sin \phi_2 = 0.74468 99541$

 $\cos \phi_2 = 0.66741 \ 05725$

 $y = 101.27940\ 65(0.99993\ 33333)\{60(2,887-2,491)\}$

+56.91088 - 18.35156 - (1.052.89388 2 - (4.48334 4))

 $-0.02352 0 \times 0.66741 06^{2} \times 0.66741 057^{2}$

× 0.74468 99541 × 0.66741 05725}

= 101.27265 45[23,760.00000 + 38.55932 - (1,052.89388 2)]

 $-4.472867 \times 0.44543687 \times 0.4970139486$

=2.357.247.281 feet

Computation of convergence, $\Delta \alpha$

 $\phi = 48^{\circ} 07'50''.941$

 $\phi_2 = 48^\circ \ 07' 56''.911$

 $\frac{\phi + \phi_2}{2} = 48^\circ \ 07' 53''.926$

 $\sin \frac{\phi + \phi_2}{2} = 0.74468\ 030$

$$\cos \frac{\phi + \phi_2}{2} = 0.66742$$
 135

 $\Delta \alpha = (416,700.000 - 418,922.592)[0.74468\ 030 + \frac{1.9587}{10^{12}}\ (416,700.000$

 $-418.922.592)^2 \times 0.74468 \ 030 \times 0.66742 \ 135^2$]

 $= -2,222.592(0.74468 \ 351)$

= -1,655.13

 $=-0^{\circ} 27'35''.13$

Computation of scale factor, k

$$k = 0.99993 \ 33333 \left[1 + \frac{(1+0.00681 \ 47849 \times 0.66743 \ 213^2)^2}{881.74916 \ 2 \times 0.99993 \ 33333^2} \left(\frac{349.231.301 - 500.000.000}{10^6} \right)^2 \right]$$

= 0.99993 \ 33333 \left[1 + \frac{1.00608 \ 0720}{881.63159 \ 9} \left(- 0.15076 \ 8699)^2 \right]

 $= 0.99993 \ 33333(1 + 0.00002 \ 5940)$

= 0.99995 927

INVERSE COMPUTATION

Formulas.—The formulas for computing geographic positions from e coordinates follow:

$$S_{g_1} = x - T_1 - T_6 \left(\frac{x - T_1}{10^5}\right)^3$$
$$S_m = \frac{0.30480\ 06099}{T_5} \left[x - T_1 - T_6 \left(\frac{S_{g_1}}{10^5}\right)^3\right]$$
$$\omega' = T_3$$

 $\frac{1}{T_5} y \qquad (remainder of \ \omega \text{ in seconds})$

$$\omega = \omega' + \omega'$$

 $(\phi')' = T_3$ (degrees and minutes of ϕ and ϕ' in whole minutes)

 $=\omega'' + [1,047.5467] 0 + (6.19276 0)$

+0.05091 2 $\cos^2 \omega$] $\sin \omega \cos \omega$ (remainder of ϕ' in seconds)

$$\phi' = (\phi')' + (\phi')'$$

 $(\phi)'' = (\phi')'' - 25.52381(1 - 0.00676\ 86580\ \sin^2 \phi')^2 \left(\frac{S_m}{10^5}\right)^2 \tan \phi'$ $\phi = (\phi')' + (\phi)''$ $S_a = S_m - 4.0831\left(\frac{S_m}{10^5}\right)^3$ $S_1 = S_m - 4.0831\left(\frac{S_a}{10^5}\right)^3$ $\Delta\lambda_1 = \frac{S_1(1 - 0.00676\ 86580\ \sin^2 \phi)^{1/2}}{30.92241\ 724\ \cos \phi}$ $\Delta\lambda_a = \Delta\lambda_1 + 3.9174\left(\frac{\Delta\lambda_1}{10^4}\right)^3$ $\lambda'' = T_2 - \Delta\lambda_1 - 3.9174\left(\frac{\Delta\lambda_a}{10^4}\right)^3$ Plane Coordinates by Data Processing

Example. – An example of the computation of latitude and longitude from plane coordinates follows. The constants of the equations are obtained from the list used in the computation of plane coordinates from a geographic position.

Given: x = 349,231.301 feet y = 2,357,247.281 feet

To compute: Latitude (= ϕ)

Longitude (= λ)

 $S_{y_1} = 349.231.301 - 500,000.000 - 0.38062 \ 27 \left(\frac{349.231.301 - 500.000.000}{10^5}\right)^3$ = -150,768.699 - 0.38062 27(-3.42715 4)

= -150.767.395

 $\frac{0.30480}{0.99993} \frac{06099}{33333} \left[349.231.301 - 500.000.000 \right]$

$$-0.38062\ 27\left(\frac{-150.767.395}{10^3}\right)^3$$

 $= 0.30482\ 09313(-150.768.699 + .304)$

-45.957.0578

 $\omega' = 2.491'$

$$18.35156 + \frac{0.00987\ 36755\ 53}{0.99993\ 33333} \times 2.357.247.281$$

18.35156 + 23.276.24660

= 23,294.59816

2,491' + 23.294".59816

$$= 41^{\circ} 31' + 6^{\circ} 28' 14''.59816$$

= 47° 59' 14".59816

 $\sin \omega = 0.74299 \ 75222$

 $\cos \omega = 0.66929 41670$

 $(\phi')' = 2.491$

$$\begin{aligned} (\phi')'' &= 23.294.59816 + [1.047.54671 \ 0 + (6.19276 \ 0 + 0.05091 \ 2 \\ &\times 0.66929 \ 42^2) \times 0.66929 \ 4167^2] \times 0.74299 \ 75222 \times 0.66929 \ 41670 \\ &= 23.294.59816 + [1.047.5467 \ 0 \\ &+ (6.21556 \ 6) \ (0.44795 \ 468)] \times 0.49728 \ 39077 \\ &= 23.816.'91087 \\ \phi' &= 2.491' + 23.816''91087 \\ &= 41^{\circ} \ 31' + 6^{\circ} \ 36'56''91087 \\ &= 48^{\circ} \ 07'56''91087 \\ \sin \phi' &= 0.74468 \ 995 \\ \tan \phi' &= 1.11578 \ 987 \\ (\phi)'' &= 23.816.91087 - 25.52381(1 \\ &- 0.00676 \ 86580 \times 0.74468 \ 995^2)^2 \left(\frac{-45.957.0578}{10^6}\right)^2 \times 1.11578 \ 987 \\ &= 23.816.91087 - 28.47921(1 - 0.00375 \ 36481)^2(+ 0.21120 \ 51) \\ &= 23.816.91087 - 5.96988 \\ &= 23.816.91087 - 5.96988 \\ &= 23.810''94099 \\ \phi &= 2.491' + 23.810''94099 \\ &= 41^{\circ} \ 31' + 6^{\circ} \ 36' \ 50'''94099 \\ &= 48^{\circ} \ 07' \ 50'''9409 \\$$

=-45,956.6615

Plane Coordinates by Data Processing

$$S_1 = -45.957.0578 - 4.0831 \left(\frac{-45.956.6615}{10^5}\right)^3$$

=-45,956.6615

 $\sin \phi = 0.74467\ 06371$

 $\cos \phi = 0.66743 \ 21255$

 $\Delta \lambda_1 = \frac{-45,956.6615(1 - 0.00676\ 86580 \times 0.74467\ 06371^2)^{1/2}}{30.92241\ 724 \times 0.66743\ 21255}$

 $=\frac{-45.956.6615 \times 0.99812\ 15089}{20.63861\ 466}$

$$= -2,222.54900$$

$$\Delta \lambda_a = -2.222.54900 + 3.9174 \left(\frac{-2.222.549}{10^4}\right)^3$$
$$= -2.222.54900 - 0.04301$$
$$-2.222.59201$$

 $\lambda'' = 416,700.00000 - (-2.222.54900) - 3.9174 \left(\frac{-2.222.592}{10^4}\right)^3$ = 416,700.00000 + 2,222.54900 + 0.04301 = 418,922",59201

 $\lambda = 116^{\circ} 22'02''.59201$

16

ALASKA PROJECTION Zones 2 to 9

Constants and formulas for computing state plane coordinates in zones 2 to 9 of the Alaska plane coordinate system follow:

CONSTANTS

Zone	Code	C (feet)	Central Meridian (CM)
2	5002	500,000.000	$511,200'',00000 (= 142^{\circ})$
3	5003	500,000.000	$525,600.00000 (= 146^{\circ})$
4	5004	500,000.000	$540.000.00000 (= 150^{\circ})$
5	5005	500,000,000	554.400.00000 (= 154°)
6	5006	500,000,000	568.800.00000 (= 158°)
7	5007	700,000.000	$583,200.00000 (= 162^{\circ})$
8	5008	500.000.000	$597.600.00000 (= 166^{\circ})$
9	5009	600,000.000	612,000.00000 (= 170°)

FORWARD COMPUTATION

Formulas. - The following formulas are used for computing plane coordinates from geographic positions.

$$x = C + \frac{1,017,862.150 \cos \phi}{(1+0.00681 47849 \cos^2 \phi)^{1/2}} \left(\frac{CM'' - \lambda''}{10^4}\right) \left[1$$

$$\frac{3.91740 509}{10^4} \left(\frac{CM'' - \lambda''}{10^4}\right)^2 \left(-2 \cos^2 \phi - \frac{0.68147 8}{10^2} \cos^4 \phi\right)$$

$$+ \frac{4.60382}{10^8} \left(\frac{CM'' - \lambda''}{10^4}\right)^4 (1-20 \cos^2 \phi + 23.6047 \cos^4 \phi)$$

$$+ 0.4907 \cos^6 \phi) + \dots \right]$$

(It is possible for x to be in the millions.)

$$y = 101.26927 \ 8503 \left[\phi'' - 193,900.05442 \ 0 - \left(,052.89394 \ 3 - 4.48338 \ 6 \cos^2 \phi + \frac{2.3559}{10^2} \cos^4 \phi \right) (1 - \cos^2 \phi)^{1/2} \cos \phi \right]$$
(Continued) 17

Plane Coordinates by Data Processing

$$+\frac{24.673.67480(1-\cos^{2}\phi)^{1/2}\cos\phi}{(1+0.00681\ 47849\ \cos^{2}\phi)^{1/2}}\left(\frac{CM^{\prime\prime}-\lambda^{\prime\prime}}{10^{4}}\right)^{2}\left[1\right]$$

$$+\frac{1.95870\ 3}{10^{4}}\left(\frac{CM^{\prime\prime}-\lambda^{\prime\prime}}{10^{4}}\right)^{2}\left(-1+6\ \cos^{2}\phi+\frac{6.13330\ 6}{10^{2}}\cos^{4}\phi\right)$$

$$+\frac{1.8577}{10^{4}}\cos^{6}\phi\right)+\frac{1.5346}{10^{8}}\left(\frac{CM^{\prime\prime}-\lambda^{\prime\prime}}{10^{4}}\right)^{4}(1-60\ \cos^{2}\phi)$$

$$+117.75\ \cos^{4}\phi+4.089\ \cos^{6}\phi)+\ldots$$

 ϕ = latitude of station ϕ'' = latitude expressed in seconds

 $\lambda'' =$ longitude of station in seconds

$$\Delta \alpha'' = (1 - \cos^2 \phi)^{1/2} \left(\frac{CM'' - \lambda''}{10^4} \right) \left[10,000.0000 + 7.83481 \left(\frac{CM'' - \lambda''}{10^4} \right)^2 \left(\cos^2 \phi + \frac{2.044}{10^2} \cos^4 \phi + \frac{0.9}{10^4} \cos^6 \phi \right) + \frac{0.3683}{10^2} \left(\frac{CM'' - \lambda''}{10^4} \right)^4 (3 \cos^4 \phi - \cos^2 \phi) +$$

$$k = 0.9999 \left[1 + \frac{(1 + 0.00681 \ 47849 \ \cos^2 \phi)^2}{881.57282 \ 1} \left(\frac{x - C}{10^6} \right)^2 + \right]$$

For approximate plane coordinate computations, the terms containing $\left(\frac{CM''-\lambda''}{10^4}\right)^4$ in the formulas for both x and y may be omitted. The omission of these terms will result in differences of not more than 0.125 foot in the computed x coordinate and/or 0.002 foot in the computed y coordinate when $(CM-\lambda)$ is $\pm 3^\circ$. When $(CM-\lambda)$ is $\pm 2^\circ$ the differences will be 0.017 foot in x and/or 0.0002 foot in y.

F--ample. – The computation of the plane coordinates of a point in zone $\beta \beta$ given as an example.

5 Given: Latitude,
$$\phi = 71^{\circ} 00'00''00000 (= 255,600''00000)$$

Longitude, $\lambda = 155^{\circ} 00'00''00000 (= 558,000''00000)$

Problem is to compute:

 $\begin{cases} x \\ y \end{cases}$ State plane coordinates Convergence, $\Delta \alpha$

Scale factor, k

From the table of constants:

C = 500.000.000 $CM = 158^{\circ} = 568.800,00000$

 $\cos \phi = 0.32556 81545$

 $\cos^2 \phi = 0.10599$ 46232

 $\cos^4 \phi = 0.01123 5$

 $\cos^{6} \phi = 0.00119$

 $\frac{CM'' - \lambda''}{10^4} \quad 56.88000 \ 0000 \quad 55.80000 \ 0000$

1.08000 0000

$$\left(\frac{CM'' - \lambda''}{10^4}\right)^2 = .16640\ 000$$
$$\left(\frac{CM'' - \lambda''}{10^4}\right)^4 = 1.36049$$

x 500,000.000

$$+\frac{1,017.862.150 \times 0.32556\ 81545}{(1+0.00681\ 47849 \times 0.10599\ 46232)^{1/2}}(1.08000\ 0000)\left[-\frac{3.91740\ 509}{10^4}(1.16640\ 000)\left(1-2 \times 0.10599\ 4623\right)\right]$$

$$\frac{0.68147\ 8}{10^2} \times 0.01123\ 5 + \frac{4.60382}{10^8}(1.36049)(1-20 \times 0.10599\ 5)$$

$$+23.6047 \times 0.01123\ 5 + 0.4907 \times 0.00119)$$

$$= 500.000.000 + \frac{357.894.1818}{1.00036\ 1100} \left[\frac{4.56926\ 13}{10^4}\ (1 - 0.21198\ 925) \\ 0.00007\ 656\ + \frac{6.2635}{10^8}\ (1 - 2.1199 + 0.2652 + 0.0006) \right]$$

278-186 O-68-4

 $= 500,000.000 + 357,764.9929(1 - 0.00036\ 00277 - 0.00000\ 00535)$ $= 857,636.168\ \text{feet}$

$$y = 101.26927 8503 \left[255.600.0000 - 193,900.05442 0 \left(.052.89394 3 - 4.48338 6 \times 0.10599 462 + \frac{2.3559}{10^2} \times 0.01123 5 \right) (1 - 0.10599 46232)^{1/2} \times 0.32556 81545 \right] + \frac{24.673.67480(1 - 0.10599 46232)^{1/2} \times 0.32556 81545}{(1 + 0.00681 47849 \times 0.10599 46232)^{1/2}} (1.16640 000) \left[1 + \frac{..95870 3}{10^4} (1.16640 0) \left(-1 + 6 \times 0.10599 462 + \frac{6.13330 6}{10^2} \times 0.01123 5 + \frac{1.8577}{10^4} \times 0.00119 \right) - \frac{.5346}{10^6} (1.3605)(1 - 60 \times 0.10599 + 7.75 \times 0.01123 5 + 4.089 \times 0.0012) \right] + 7.75 \times 0.01123 5 + 4.089 \times 0.0012) \right] = 101.26927 8503(61.375.97866 5) + 8.855.97812 \left[1 + \frac{2.28463}{10^4} + 0.63596 77 + 0.00068 91 + 0.00000 02) + \frac{2.0878}{10^6} (1 - 6.359 + .323 + 0.005) \right] = 6.215.501.0768 + 8.855.97812(1 - 0.00008 3010 - 0.00000 0084) = 6.224.356.319 feet \Delta\alpha'' = (1 - 0.10599 46232)^{1/2} \times 1.08000 0000 \left[10.000.0000 + 7.83481 \times 1.16640 \left(0.10599 5 + \frac{2.044}{10^2} \times 0.0112 + \frac{0.9}{10^4} \times 0.00119 \right) + \frac{0.3683}{10^2} \times .3605(3 \times 0.01124 - 0.10599) \right]$$

 = + 02116 006 × 10.000.97037
 = + 10.2127.592

 $\Delta \alpha = +2^{\circ} 50' 12''_{.592}$

$$k = 0.9999 \left[1 + \frac{(1 + 0.00681 \ 47849 \times 0.10599 \ 46232)^2}{881.57282 \ 1} \left(\frac{857.636.168 - 500.000.000}{10^6} \right)^2 \right]$$

= 0.9999(1 + 0.00014 \ 5295)
= 1.00004 \ 53

INVERSE COMPUTATION

Formulas.-The formulas for computing geographic positions from plane coordinates follow: to adding the second street

$$\begin{aligned} (\omega')'' &= 193,900.05442\ 0 + 0.00987\ 46630\ 2498\ y \\ (\phi')'' &= (\omega')'' + \left(1,047.54669\ 1 + 6.19301\ 1\ \cos^2\ \omega' \\ &+ \frac{5.0699}{10^2}\ \cos^4\ \omega'\right)\ (1 - \cos^2\ \omega')^{1/2}\ \cos\ \omega' \\ \phi'' &= (\phi')'' - 233.97364\ 50\left(\frac{x-C}{10^6}\right)^2(1 + 0.00681\ 47849\ \cos^2\ \phi')^2\left(\frac{1}{\cos^2\ \phi'} \\ &- 1\right)^{1/2}\left[1 - \frac{1.89056\ 040}{10^4}\left(\frac{x-C}{10^6}\right)^2\left(1.95911\ 13 + \frac{3}{\cos^2\ \phi'} \\ &+ \frac{8.1359}{10^2}\ \cos^2\ \phi' + \frac{2.79}{10^4}\ \cos^4\ \phi'\right) + \frac{1.42969}{10^8}\left(\frac{x-C}{10^6}\right)^4\ (1 \\ &+ 0.00681\ 47849\ \cos^2\ \phi')\ \left(15.5 + \frac{45}{\cos^4\ \phi'} - \frac{0.307}{\cos^2\ \phi'} \\ &+ 1.53\ \cos^2\ \phi'\right) \right] \\ \lambda'' &= CM'' - 9,824.51307\ 2\ \frac{(1 + 0.00681\ 47849\ \cos^2\ \phi')^{1/2}}{\cos\ \phi'}\left(\frac{x-C}{10^6}\right)\left[1\right] \end{aligned}$$

$$-\frac{3.78112\ 080}{10^4}\ (1+0.00681\ 47849\ \cos^2\phi')\ \left(\frac{x-C}{10^6}\right)^2\left(-1+\frac{2}{\cos^2\phi'}\right) + 0.00681\ 47849\ \cos^2\phi'\right) + \frac{4.28906\ 24}{10^8}\ (1-1)^{10^8}$$

$$+ 0.00681 \ 47849 \ \cos^2 \phi')^2 \left(\frac{x-C}{10^6}\right)^4 \left(1.054 + \frac{24}{\cos^4 \phi'} - \frac{20}{\cos^2 \phi'} - \frac{1.36}{10^2} \cos^2 \phi'\right) \right]$$

For approximate computation of geodetic positions from plane coordinates, the terms containing $\left(\frac{x-C}{10^6}\right)^4$ in the formulas for both ϕ and λ may be omitted. The omission of these terms will result in differences of not more than 0.00014 second in the computed ϕ and/or 0.01492 second in the computed λ when $(CM - \lambda)$ is $\pm 3^\circ$. When $(CM - \lambda)$ is $\pm 2^\circ$ the differences will be 0.00002 second in ϕ and/or 0.00196 second in λ .

Example.—For an example of the computation of latitude and longitude from plane coordinates, the same point is used as in the forward computation. The constants are the same as in the forward computation, namely:

C = 500,000.000 $CM = 158^{\circ} = 568,800''.00000$ Given: x = 857,636.168 feet y = 6,224,356.319 feet To compute: Latitude $(=\phi)$ Longitude $(=\lambda)$ $(\omega')'' = 193,900.05442 \ 0 + 0.00987 \ 46630 \ 2498 \times 6,224,356.319$ = 255,363,47561 8 $\cos \omega' = 0.32665\ 21687$ $\cos^2 \omega' = 0.10670 \ 16393$ $\cos^4 \omega' = 0.011385$ $(\phi')'' = 255,363.47561 8 + (1,047.54669 1 + 6.19301 1 \times 0.10670 16$ $+\frac{5.0699}{10^2} \times 0.011385$ (1-0.10670 16393)^{1/2} × 0.32665 21687 = 255,363.47561 8 $+1.048.20807\ 2 \times 0.94514\ 46242 \times 0.32665\ 21687$ = 255,687,09260 8

 $\cos^2 \phi' = 0.10573 \ 48087$

 $\cos^4 \phi' = 0.01117 9850$

$$\left(\frac{x-C}{10^6}\right) = \frac{857,636.168 - 500,000.000}{10^6}$$
$$= + 0.35763 \ 6168$$
$$\left(\frac{x-C}{10^6}\right)^2 = 0.12790 \ 36287$$

$$\left(\frac{x-C}{10^6}\right)^4 = 0.01635\ 9338$$

$$\begin{split} \phi'' &= 255,687.09260\ 8 - 233.97364\ 50\ (0.12790\ 36287)\ (1\\ &+ 0.00072\ 05600)^2\ \left(\frac{1}{0.10573\ 48087} - 1\right)^{1/2}\ \left[1\\ &- \frac{1.89056\ 040}{10^4} \times 0.12790\ 3629\ \left(1.95911\ 13 + \frac{3}{0.10573\ 48087}\right) \\ &+ \frac{8.1359}{10^2} \times 0.10573 + \frac{2.79}{10^4} \times 0.011\ + \frac{1.42969}{10^8}\ (0.01635\ 93)\ (1\\ &+ 0.00072)\ \left(15.5 + \frac{45}{0.01117\ 98} - \frac{0.307}{0.1057} + 1.53 \times 0.106\ \right)\ \right] \\ &= 255,687.09260\ 8 - 29.92607\ 822 \times 1.00144\ 1639 \times 2.90819\ 9338\ \left[1\\ &- \frac{0.24180\ 954}{10^4}\ (30.33198\ 1 + 0.00860\ 2 + 0.00000\ 3)\ \\ &+ \frac{0.02340\ 6}{10^8}\ (15.5 + 4,025.1 - 2.9 + 0.2)\ \right] \end{split}$$

= 255,687.092608 - 87.15646815(1 - 0.0007336643)

+0.0000009451)

 $= 255.687.09260 \ 8 - 87.09260 \ 7$

= 255,600''00000 1

 $\phi = 71^{\circ} \ 00' 00'' 00000$

$$\lambda'' = 568,800.00000$$

$$-9,824.51307 2 \frac{(1+0.00681 47849 \times 0.10573 48087)^{1/2}}{0.32516 88926} (+0.35763 6168) \left[1 - \frac{3.78112 080}{10^4} \times 1.00072 0560 \times 0.12790 36287 \left(-1 + \frac{2}{0.10573 48087} + 0.00072 06 \right) + \frac{4.28906 24}{10^4} (1.00072 0560)^2 \times 0.01635 9338 \left(1.054 + \frac{24}{0.01117 9850} - \frac{20}{0.10573 48} - \frac{1.36}{10^2} \times 0.106 \right) \right]$$

$$= 568,800.00000 - 10,809.35765 8 \left[1 - \frac{0.48396 7547}{10^4} (-1 + 18.91524 68 + 0.00072 06) + \frac{0.07026 738}{10^6} (1.054 + 2,146.719 - 189.152 - 0.001) \right]$$

$$= 568,800.00000 - 10,809.35765 8 \times 0.99913 43016$$

- 1.15 662.49 //64/8~29/30.007 8222×11.014 (4, 3,659) (2,396) (3)

8401 NO. 1000 84-82 10 00 01 01 - 1 0001 - 86613

and the second

0000"00100

= 557,999.99998 6

 $\lambda = 154^{\circ} 59' 59'' 999999$

9.0251 (1.527 + 4**,02**6.1 - 2.9 - 0.10

ALASKA PROJECTION Zone 1 (Code 5001)

The following constants are used in the formulas for computing in zone 1 of the Alaska plane coordinate system.

A = 6,388,906.01513	$e = 0.08227 \ 18542 \ 23003$
$B = 1.00029 \ 97727 \ 3$	$e^2 = 0.00676 \ 86579 \ 97291$
<i>C</i> = 0.00447 59913 1	$\pi = 3.14159\ 26535\ 89793$
$D = \frac{Ak_c}{R} = 6,386,352.67013$	$\epsilon = 2.71828$ 18284 59045
B	$k_{\rm c} = 0.99990 \ 00000 \ 00$
$F = -\sin \alpha_0 = 0.32701\ 55171\ 76$	a = 6,378,206.40000
$G = \cos \alpha_0 = 0.94501$ 89688 71	$\lambda_{\mu} = 101^{\circ} 30'50''_{51319} (= 365.450''_{51319})$
$H = -\tan \alpha_0 = 0.34604 \ 12203$	
$I = \frac{Ak_c}{a} = 1.00157\ 73595$	

FORWARD COMPUTATION

Formulas. – The following formulas are used for computing plane coordinates from geographic positions.

$$\mu = \log_{\epsilon} \tan\left(\frac{\pi}{4} + \frac{\phi}{2}\right) - \frac{e}{2}\log_{\epsilon}\left(\frac{1+e\sin\phi}{1-e\sin\phi}\right)$$

$$P = \frac{\epsilon^{(B\mu-C)} - \epsilon^{-(B\mu-C)}}{2}$$

$$Q = \frac{\epsilon^{(B\mu+C)} + \epsilon^{-(B\mu-C)}}{2}$$

$$u = D \arctan \frac{GP + F\sin B(\lambda - \lambda_0)}{\cos B(\lambda - \lambda_0)} \qquad \text{(factor multiplied by } D \text{ is in radians)}$$

$$v = \frac{D}{2} \log_{\epsilon} \frac{Q + FP - G \sin B(\lambda - \lambda_{o})}{Q - FP + G \sin B(\lambda - \lambda_{o})}$$

25

Plane Coordinates by Data Processing

 $x = 3.28083 \ 33333 \ 3 \ (-0.6u + 0.8v + 5,000,000.0000)$ feet $y = 3.28083 \ 33333 \ 3 \ (0.8u + 0.6v - 5,000,000.0000)$ feet Convergence:

$$\gamma = \arctan \frac{3Q \cos B(\lambda - \lambda_o) - 4P \sin B(\lambda - \lambda_o) - 4H}{4Q \cos B(\lambda - \lambda_o) + 3P \sin B(\lambda - \lambda_o) + 3H}$$

Scale factor:

$$k = \frac{I(1 - e^2 \sin^2 \phi)^{1/2} \cos (u/D)}{\cos \phi \cos B(\lambda - \lambda_0)} \qquad (u/D \text{ is in radians})$$

Example.—The computation of the plane coordinates of an arbitrary position in zone 1 is given as an example.

Given: Latitude, $\phi = 55^{\circ} 00'00.00000$ Longitude, $\lambda = 134^{\circ} 00'00.0000(=482,400.0000)$

Problem is to compute:

 $\begin{cases} x \\ y \end{cases}$ State plane coordinates Convergence, γ Scale factor, k

$$\frac{\pi}{4} + \frac{\phi}{2} = 45^\circ + 27^\circ 30'00''.00000 0$$

= 72° 30′00″.00000 0

 $\log_{e} \tan 72^{\circ} 30' 00'' 00000 0 = 1.15423 45536 1$

$$\frac{1+e\sin\phi}{1-e\sin\phi} = 1.14452\ 64060\ 0$$
$$\log_{e}\left(\frac{1+e\sin\phi}{1-e\sin\phi}\right) = 0.13499\ 09322\ 30$$
$$\frac{e}{2}\log_{e}\left(\frac{1+e\sin\phi}{1-e\sin\phi}\right) = 0.00555\ 29771\ 49$$
$$\mu = 1.15423\ 45536\ 1-0.00555\ 29771\ 5$$
$$= 1.14868\ 15764\ 6$$
$$B\mu + C = 1.15350\ 19111\ 8$$
$$\epsilon^{(B\mu+C)} = 3.16927\ 20084\ 36$$

26

-) nst me

 $\epsilon^{-(B\mu+C)} = 0.31552 \ 98747 \ 91$

 $P = 1.42687 \ 10668 \ 2$

 $Q = 1.74240\ 09416\ 1$

 $\lambda - \lambda_o = 482,400.00000 \ 0 - 365,450.51319$

= 116,949.48681 0

 $B(\lambda - \lambda_o) = 116,984.545077$

= 32° 29'44".54507 7

 $\sin B(\lambda - \lambda_o) = 0.53723\ 64135\ 57$

 $\cos B(\lambda - \lambda_o) = 0.84343 \ 17020 \ 06$

 $u = 6,386,352.67013 \text{ arc } \tan \frac{1.34842\ 02242\ 8 + 0.17568\ 46436\ 3}{0.84343\ 17020\ 06}$

=6,386,352.67013 arc tan 1.80702 81971 7

= 6,386,352.67013 × 1.06535 04835 7

= 6,803,703.90537

 $v = 3,193,176.33506 5 \log_{e} \frac{1.70131 13198 9}{1.78349 05633 3}$

=3,193,176.335065(-0.0471731163517)

=-150,632.07879

 $x = 3.28083 \ 33333 \ 3(-4,082,222.34322 - 120,505.66303 + 5,000,000.00000)$

=2,615,716.5328 feet

 $y = 3.28083 \ 33333 \ 3(5,442,963.12430 - 90,379.24727 - 5,000,000.00000)$

=1,156,768.9366 feet

Convergence:

 $\gamma = \arctan \frac{4.40878\ 8575 - 3.06626\ 8378 - 1.38416\ 4881}{5.87838\ 4767 + 2.29970\ 1284 + 1.03812\ 3661}$ = arc tan (-0.00451\ 86346) = -0° 15'32''.0

Scale factor:

 $u/D = 1.06535\ 0484\ \text{radians}$ = 61° 02'24''3112 $k = \frac{1.00157\ 7360(1 - 0.00454\ 18376)^{1/2} \times 0.48419\ 758}{0.57357\ 644 \times 0.84343\ 17020}$ = $\frac{0.48385\ 877}{0.48377\ 255}$ = 1.00017 82

INVERSE COMPUTATION

Formulas.—The formulas for computing geographic positions from plane coordinates follow:

 $u = -0.18288 \ 03657 \ 61x + 0.24384 \ 04876 \ 81y + 7,000,000.0000$ $v = 0.24384 \ 04876 \ 81x + 0.18288 \ 03657 \ 61y - 1,000.000.0000$ $R = \frac{\epsilon^{(t'/D)} - \epsilon^{-(t'/D)}}{2}$ $S = \frac{\epsilon^{(t'/D)} + \epsilon^{-(t'/D)}}{2}$ $\mu = \frac{1}{2B} \log_{\epsilon} \frac{S + FR + G \sin(u/D)}{S - FR - G \sin(u/D)} - \frac{C}{B} \qquad (u/D \text{ is in radians})$ $\chi_{r} = 2 \text{ arc } \tan \epsilon^{\mu} - \frac{\pi}{2} \qquad (\chi_{r} \text{ and arc } \tan \epsilon^{\mu} \text{ are in radians})$ $\phi_{r} = \chi_{r} + (0.00676 \ 10325 \ 71 + 0.00005 \ 31722 \ 05 \ \cos^{2} \chi$ $+ 0.00000 \ 05730 \ 27 \ \cos^{4} \chi$ $+ 0.00000 \ 00071 \ 28 \ \cos^{6} \chi) \sin \chi \cos \chi \qquad (\phi_{r} \text{ is in radians})$

$$\phi'' = 206,264.80624 \ 7 \ \phi_r$$

$$\lambda = \lambda_u + \frac{1}{B} \arctan \frac{F \sin (u/D) - GR}{\cos (u/D)} \qquad (u/D \text{ is in radians})$$

Example. – An example of the computation of latitude and longitude from plane coordinates follows. The constants of the equations are obtained from the list at the beginning of this section dealing with the Alaska projection, zone 1.

Given: x = 2,615,716.5328 feet

y = 1,156,768.9366 feet

To compute: Latitude $(=\phi)$

Longitude $(=\lambda)$

 $u = -0.18288 \ 03657 \ 61 \times 2,615,716.5328$

 $+ 0.24384 04876 81 \times 1,156,768.9366 + 7,000,000.0000$

= 6,803,703.90539

 $v = 0.24384 04876 81 \times 2,615,716.5328$

 $+ 0.18288 \ 03657 \ 61 \times 1.156,768.9366 - 1,000,000.0000$

COLOR AND

THE STORE

= -150,632.07878

 $v/D = \frac{-150,632.07878}{6,386,352.67013}$

 $= -0.02358\ 65581\ 750$

 $\epsilon^{(v/D)} = 0.97668 94305 55$

 $\epsilon^{-(r'D)} = 1.02386\ 69209\ 6$

R = -0.02358 87452 025

S = 1.00027 81757 575

 $u/D = \frac{6.803,703.90539}{6,386,352.67013}$

Plane Coordinates by Data Processing

='1.06535 04835 7 radians

 $=61^{\circ} 02'24''_{.31107} 9$

 $\sin (u/D) = 0.87495 86851 82$ $\cos (u/D) = 0.48419 75828 36$

 $\mu = 0.49985 \ 01585 \ 53 \ \log_{e} \frac{1.81941 \ 68445 \ 21}{0.18113 \ 95069 \ 940} - 0.00447 \ 46499 \ 32$ $= 0.49985 \ 01585 \ 53 \ \log_{e} \ 10.04428 \ 50636 - 0.00447 \ 46499 \ 32$ $= 0.49985 \ 01585 \ 53 \times 2.30700 \ 38223 \ 7 - 0.00447 \ 46499 \ 32$ $= 1.14868 \ 15764 \ 6$

 $\chi_r = 2 \arctan \epsilon^{1.14868} \frac{15764}{7} 6 - \frac{\pi}{7}$

= 2 arc tan 3.15403 18174 3 - 1.57079 63267 949

= 0.95673 87821 85 radian ($= 54^{\circ} 49'01''_{.53953} 6$)

 $\sin \chi = 0.81731\ 68417\ 50$

 $\cos \chi = 0.57618\ 84936\ 30$

 $\phi_r = 0.95673\ 87821\ 85 + (0.00676\ 10325\ 71 + 0.00001\ 76528\ 09$

 $+0.00000\ 00631\ 59+0.00000\ 00002\ 61) \times 0.47092\ 85598\ 66$

= 0.95993 10885 95 radian

 $\phi'' = 206,264.80624 \ 7 \times 0.95993 \ 10885 \ 95$

= 198.000,00000

 $\phi = 55^{\circ} \ 00' 00'' 00000$

 $\lambda = 101^{\circ} 30' 50''_{.5} 1319$

+ 0.99970 03171 07 arc tan $\begin{bmatrix} 0.32701 \ 55171 \ 76(0.87495 \ 86851 \ 82) \\ 0.48419 \ 75828 \ 36 \end{bmatrix}$

 $\frac{0.94501\ 89688\ 71(-0.02358\ 87452\ 025)}{0.48419\ 75828\ 36}$

30

Alaska Projection, Zone 1

= 101° 30'50".51319 + 0.99970 03171 07 arc tan 0.63696 49282 501

= 101° 30'50".51319 + 116,949".48681

= 134° 00'00"00000
PUERTO RICO, VIRGIN ISLANDS, AND ST. CROIX PROJECTION

This is a Lambert projection in which the same formulas are used as in the state projections. The necessary constants are as follows:

Crobb Sustains

$L_1 = 500.000.00$	$L_{2} = 1088$
$L_2 = 239.160.0000$	$L_{\rm s} = 48 \ 44933$
$L_3 = 63.542.221.66$	$L_{4} = 3.82699$
$L_4 = 63.687.479.44^*$	$L_{10} = 1.51030$
$L_5 = .999999 \ 39449$	$L_{11} = 0$
$L_6 = .31288 \ 82281$	

*63.787.479.44 for St. Croix

에 있는 것은 것은 것은 것은 것은 것을 가지 않는 것 같은 것은 것은 것은 것은 것을 알려야 한 것을 같은 것을 같은 것을 알려야 한 것을 알려야 한 것을 알려야 한 것을 알려야 한 것을 알	Code
Puerto Rico and Virgin Islands	5201
St. Croix	5202

33

SAMOA PROJECTION

The plane coordinate projection for American Samoa is a Lambert projection and the same formulas are used as in the state projections. The necessary constants are as follows:

Code 5300

$L_1 = 500.000.00$	$L_7 = -851$
$L_2 = 612.000.0000$	$L_8 = -49.53291$
$L_3 = -82.312.234.65$	$L_9 = 3.82892$
$L_4 = -82.000.000.00$	$L_{10} = -1.16664$
$L_5 = .999999 999999$	$L_{11} = 0$
$L_6 =2464352205$	

Enter latitudes with a negative sign.

Constant L_5 is actually exactly one, but it is entered this way to avoid a digit in the units place, thus conforming to the number of places carried in all the other projections.

GUAM PROJECTION

The plane coordinate projection for Guam approximates an azimuthal equidistant projection, one in which the azimuth at the origin to any point and the distance from the origin to that point are the same on the projection as they are on the ellipsoid. This is often called a tangent plane projection. Due to the limited size of Guam, this projection may, for all practical purposes, be considered a true azimuthal equidistant projection.

The origin of the projection is station Agana Monument 1945, the position of which is: latitude 13° 28'20''.87887 N., longitude 144° 44'55''.50254 E. The plane coordinates of the origin have been assigned the values, x equals 50,000 meters, y equals 50,000 meters so that the plane coordinates of all points on the island will be positive in sign.

The geographic position of Agana Monument given above is based on the Guam Datum of 1963 and Clarke Spheroid of 1866.

FORWARD COMPUTATION

Formulas. - The following formulas are used for computing plane coordinates from geographic positions.

 $x = 50,000.0000 + \frac{30.92241\ 724(\lambda'' - 521.095.50254)\ \cos\phi}{(1 - 0.00676\ 86580\ \sin^2\phi)^{1/2}}$ meters

 $y = 50,000.0000 + 30.87002 482[\phi'' - 48,263.28375 78]$

 $-(1,052.89394 \ 3-4.48338 \ 6 \ \cos^2 \phi + 0.02355 \ 9 \ \cos^4 \phi) \sin \phi \ \cos \phi]$

 $+ \left(\frac{x - 50,000.0000}{10^4}\right)^2 \frac{(\tan \phi)(1 - 0.00676\ 86580\ \sin^2 \phi)^{1/2}}{0.12756\ 4128} \text{ meters}$

Example. - To compute the plane coordinates of the position:

$$\phi = 13^{\circ} 20' 20''.53846 \text{ N.}$$

 $\lambda = 144^{\circ} 38' 07''.19265 \text{ E.}$

x = 50,000.0000

(Continued)

35

 $+ \frac{30.92241\ 724(520.687.19265 - 521.095.50254) \times 0.97302\ 19026}{(1 - 0.00676\ 86580 \times 0.23071\ 27589^2)^{1/2}}$

 $= 50,000.0000 + \frac{30.08818\,926(-408.30989)}{0.99981\,98414}$

= 50,000.0000 - 12.287.5189

= 37,712.4811 meters

 $y = 50,000.0000 + 30.87002 \ 482 \ [48.020.53846]$

 $-48.263.2837578 - (1.052.893943 - 4.483386 \times 0.9730219^{2}$

 $+0.02355 9 \times 0.97302 194 \times 0.23071 27589 \times 0.97302 19026$]

$$+\left(\frac{-12.287.5189}{10^4}\right)^2\frac{0.23710\ 95226\times0.99981\ 98414}{0.12756\ 4128}$$

= 50.000.0000 + 30.87002 482 [-242.74529 8 - (1.052.89394 3)]

 $-4.244743 + 0.021118) \times 0.2244885676 + 2.80589$

= 50.000.0000 - 14,760.80476 + 2.80589

= 35.242.0011 meters

INVERSE COMPUTATION

Formulas. – The following formulas are used for computing geographic positions from plane coordinates.

$$\omega_1'' = 48.263.28377\ 02 + 0.03239\ 38839\ 0\left[y - 50.000.0000 - \left(\frac{x - 50.000.0000}{10^4}\right)^2 \times 1.87770\right]$$

 $\phi_1'' = \omega_1'' + (1.047.54669 \ 1 + 6.19301 \ 1 \ \cos^2 \omega_1$

+ 0.05069 9 $\cos^4 \omega_1$) sin $\omega_1 \cos \omega_1$

$$\omega_2'' = 48.263.28377\ 02 + 0.03239\ 38839\ 0\left[v - 50.000.0000\right] \\ -\left(\frac{x - 50.000.0000}{10^4}\right)^2 \frac{(\tan \phi_1)\left(1 - 0.00676\ 86580\ \sin^2\ \phi_1\right)^{1/2}}{0.12756\ 4128}\right]$$

Guam Projection

 $\phi_2'' = \omega_2'' + (1.047.54669 \ 1 + 6.19301 \ 1 \ \cos^2 \omega_2$

+ 0.05069 9 $\cos^4 \omega_2$) $\sin \omega_2 \cos \omega_2$

$$\omega_3'' = 48.263.28377\ 02 + 0.03239\ 38839\ 0\left[y - 50.000.0000\right] \\ - \left(\frac{x - 50.000.0000}{10^4}\right)^2 \frac{(\tan \phi_2)(1 - 0.00676\ 86580\ \sin^2 \phi_2)^{1/2}}{0.12756\ 4128}$$

 $\phi'' = \omega_3'' + (1.047.54669 \ 1 + 6.19301 \ 1 \ \cos^2 \omega_3$

 $+0.05069 9 \cos^4 \omega_3$) sin $\omega_3 \cos \omega_3$

$$\lambda'' = 521.095.50254 + \frac{(x - 50.000.0000)(1 - 0.00676\ 86580\ \sin^2\ \phi)^{1/2}}{30.92241\ 724\ \cos\ \phi}$$

Example.—To compute the geodetic position of the point the plane coordinates of which are:

$$x = 37.712.4811$$
 meters
 $y = 35.242.0011$ meters

$$\omega_1'' = 48.263.28377\ 02 + 0.03239\ 38839\ 0\left[35.242.0011\right] \\ -50.000.0000 - \left(\frac{37.712.4811 - 50.000.0000}{10^4}\right)^2 \times 1.87770\right] \\ = 48.263\ 28377\ 02 + 0.03239\ 38839\ 0(-14.757\ 9989 - 2.8250)$$

=47,785,1230306

 $\phi_1'' = 47.785.12303\ 06 + (1.047.54669\ 1 + 6.19301\ 1 \times 0.97328\ 459^2$

 $+0.05069 9 \times 0.97328 4594) \times 0.22960 20734 \times 0.97328 45873$

 $=47,785.12303\ 06 + (1,047.54669\ 1 + 5.86653\ 3$

 $+0.045494) \times 0.2234681593$

 $= 47.785.12303\ 06 + 1.053.45871\ 8 \times 0.22346\ 81593$ $= 48.020^{"}_{.53751\ 12}$

 $\omega_2'' = 48.263.28377\ 02 + 0.03239\ 38839\ 0 \ 35.242.0011 - 50,000.0000$

$$\left(\frac{37.712.4811 - 50,000.0000}{10^4}\right)^2$$

 $\times \frac{0.23710\ 95177(1-0.00676\ 86580\times 0.23071\ 27543^2)^{1/2}}{0.12756\ 4128}$

= 48.263.28377 02 + 0.03239 38839 0(-14,757.9989)

 $-11.83586 0 \times 0.23710 95177 \times 0.99981 98414)$

= 48,263.28377 02 + 0.03239 38839 0(-14,760.80479)

=47,785.1239736

 $\phi_2'' = 47,785.12397 \ 36 + (1,047.54669 \ 1 + 6.19301 \ 1 \times 0.97328 \ 459^2$

 $+0.05069 9 \times 0.97328 459^{4}) \times 0.22960 20779 \times 0.97328 45862$

 $= 47,785.12397 \ 36 + (1,047.54669 \ 1 + 5.86653 \ 3$

 $+0.045494) \times 0.2234681634$

 $= 47,785.12397 \ 36 + 1,053.45871 \ 8 \times 0.22346 \ 81634$

=48,020,53845 85

 $\boldsymbol{\omega}_{3}^{\prime\prime} = 48,263.28377\ \mathbf{02} + 0.03239\ 38839\ \mathbf{0} \left[35,242.0011 - 50,000.0000 \right]$

$$-\left(\frac{37.712.4811-50.000.0000}{10^4}\right)^2$$

 $\times \frac{0.23710\ 95226(1-0.00676\ 86580\times 0.23071\ 27589^2)^{1/2}}{0.12756\ 4128}$

=48.263.2837702 + 0.03239388390(-14.757.9989)

 $-11.83586 0 \times 0.23710 95226 \times 0.99981 98414)$

= 48,263.28377 02 + 0.03239 38839 0(-14,760.80479)

=47.785".12397 36

 $\phi'' = 47.785.12397\ 36 + (1.047.54669\ 1 + 6.19301\ 1 \times 0.97328\ 459^2$

 $+0.05069 9 \times 0.97328 4594) \times 0.22960 20779 \times 0.97328 45862$

Guam Projection

= 47.785.1239736 + (1.047.546691 + 5.866533)

$+0.045494) \times 0.2234681634$

 $= 47.785.12397 \ 36 + 1.053.45871 \ 8 \times 0.22346 \ 81634$

= 48.020.53845 85

 $\phi = 13^{\circ} 20' 20''.53846$ N.

 $\lambda'' = 521,095.50254$

 $+\frac{(37.712.4811 - 50.000.0000)(1 - 0.00676\ 86580 \times 0.23071\ 27589^2)^{1/2}}{30.92241\ 724 \times 0.97302\ 19026}$

 $= 521.095.50254 + \frac{(-12.287.5189) \times 0.99981\ 98414}{30.08818\ 926}$

naora, Empira GL Morthael Tastro for the Controlation of O Fostituis, U.S. - Stand Groupic Same Special Publics

AL TRANSVERS MERCATOR CALLS, S. Deachelly of the

= 521.095.50254 - 408.30989

= 520.687, 19265

 $\lambda = 144^{\circ} 38' 07''_{...}19265 \text{ E}.$

BIBLIOGRAPHY

Adams, Oscar S.; LATITUDE DEVELOPMENTS CONNECTED WITH GEODESY AND CARTOGRAPHY, U.S. Coast and Geodetic Survey Special Publication No. 67, U.S. Government Printing Office, Washington, D.C., 1921.

Adams, Oscar S., and Claire, Charles N.; PLANE COORDINATE COM-PUTATIONS, U.S. Coast and Geodetic Survey Special Publication No. 193, U.S. Government Printing Office, Washington, D.C., 1935.

FORMULAS AND TABLES FOR THE COMPUTATION OF GEODETIC POSI-TIONS, U.S. Coast and Geodetic Survey Special Publication No. 8, U.S. Government Printing Office, Washington, D.C., 1933.

PLANE COORDINATE INTERSECTION TABLES (2¹/₂-MINUTE), ALASKA, ZONE 1, U.S. Coast and Geodetic Survey Publication 65-1, Part 49, U.S. Government Printing Office, Washington, D.C., 1961.

RELATIONSHIP BETWEEN LOCAL PLANE COORDINATES AND GEO-GRAPHIC POSITIONS [This leaflet, in a limited way, supersedes RELATION BETWEEN PLANE RECTANGULAR COORDINATES AND GEOGRAPHIC POSI-TIONS, U.S. Coast and Geodetic Survey Special Publication No. 71], U.S. Coast and Geodetic Survey, Washington, D.C., 1954.

Simmons, Lansing G., NATURAL TABLES FOR THE COMPUTATION OF GEODETIC POSITIONS, U.S. Coast and Geodetic Survey Special Publication No. 241, U.S. Government Printing Office, Washington, D.C., 1949.

Thomas, Paul D., CONFORMAL PROJECTIONS IN GEODESY AND CAR-TOGRAPHY, U.S. Coast and Geodetic Survey Special Publication No. 251, U.S. Government Printing Office, Washington, D.C., 1952.

UNIVERSAL TRANSVERSE MERCATOR GRID, U.S. Department of the Army Technical Manual No. TM 5-241-8 [Formerly U.S. Army Map Service Technical Manual No. 19 dated 1948], Headquarters, Department of the Army, Washington, D.C., 1958.

APPENDIX

The constants in the tables of constants and in the formulas for the various projections are explained in the following section.

The code number at the beginning of each list of constants in the tables is used to identify the zone in which a computation is to be made. It is used when the constants for all of the state plane coordinate zones in the United States along with the computation formulas are loaded onto the computer simultaneously, as is the practice in the Coast Survey. This code number is also entered as input data with each geodetic position, or plane coordinate, which is to be converted. In addition, some symbol or sign must be entered with the code number, either at the time of entering individual geodetic positions or plane coordinates or when the constants and formulas are loaded, to direct the machine to the Lambert or transverse Mercator equations, whichever are to be used. Of course, if the constants for one zone only are loaded at any one time the code number need not be used.

Convergence is the angle between the meridian through a point and a line through the point parallel to the y axis. It may be used in the following formula for computing geodetic azimuths from grid azimuths, and vice versa.

geodetic azimuth = grid azimuth + convergence + second term

Azimuths are measured clockwise from the south. The formula for the second term, also called the (t-T) correction, may be found in the references listed in the bibliography or in the various state plane coordinate projection tables. This term may be significant when azimuths of lines longer than a few miles are to be computed.

The scale factor, k, as computed by the formulas in the foregoing text is the value at a point. For a short line, the scale factor at its midpoint may be used. If the scale factor for a long line is to be computed, or greater precision for a short line is desired, the following formula may be used:

$$k=\frac{k_1+4k_m+k_2}{6},$$

in which k_1 and k_2 are the scale factors at the ends of the line and k_m is

41

the scale factor at the midpoint of the line. For converting geodetic distance to grid distance, and vice versa, the following formula is used.

grid distance = geodetic distance × scale factor

To convert plane coordinates in one system (or zone) to plane coordinates in another system (or zone), it is best to compute the geographic position from the plane coordinates in the first system and with this position compute the plane coordinates in the desired system (or zone). The same geodetic datum must be used for both coordinate systems.

For limited areas it is possible to convert directly from one plane coordinate system to another. If the plane coordinates on both systems of four or more stations are available, transformation equations can be derived empirically for converting the coordinates directly from one system to another. This may be the most practicable method when the surveys, on which the two sets of plane coordinates are based, are not on the same geodetic datum.

For further details regarding the special publications or other references mentioned in the following discussions, please consult the bibliography.

LAMBERT PROJECTION

Forward Computation. $-L_1$ is the false easting, or x coordinate. of the central meridian.

- L_2 is the central meridian expressed in seconds.
- L_3 is the map radius of the central parallel (ϕ_o).
- L_4 is the map radius of the lowest parallel of the projection table plus the y value on the central meridian at this parallel. This y value is zero in most, but not all, cases.
- L_5 is the scale (m) of the projection along the central parallel (ϕ_o).
- L_6 is the *l* computed from the basic equations for the Lambert projection with two standard parallels.
- L_7 is the degrees and minutes portion, in minutes, of the rectifying latitude for ϕ_0 , where $\phi_0 = \arcsin l$.

Rectifying latitude, ω , is defined by the equation:

 $\omega'' = \phi'' - 525.32978 \ 0 \ \sin 2\phi + 0.55747 \ 8 \ \sin 4\phi - 0.00073 \ 5 \ \sin 6\phi.$

(See Special Publication No. 67, pp. 122–128.)

By substitution of trigonometric identities, this can be shown to be equivalent to the following equation:

 $\omega'' = \phi'' - [1.052.89388 \ 2 - (4.48334 \ 4 - 0.02352 \ 0 \ \cos^2 \phi) \ \cos^2 \phi] \sin \phi \ \cos \phi.$

Appendix

The significance of rectifying latitude is that the meridional arc on the earth ellipsoid from 0° to ϕ° equals the length of a great circle from 0° to ω° on a sphere whose circumference is equal to the meridional ellipse of the earth ellipsoid, ω being defined by the foregoing equation. It follows that the meridional arc on the earth ellipsoid from ϕ_1 to ϕ_2 equals the length of a great circle on the sphere from ω_1 to ω_2 .

This property is also used, in the inverse computation of a geodetic position from plane coordinates, for finding the difference of geodetic latitude corresponding to a computed meridional arc on the ellipsoid.

$$L_{8} \text{ is the remainder of } \omega_{o}, \text{ i.e., the seconds,}$$

$$L_{9} = (1/6R_{o}N_{o}) \times 10^{16},$$

$$L_{10} = [\tan \phi_{o}/24(R_{o}N_{o})^{3/2}] \times 10^{24}.$$

$$L_{11} = [(5+3 \tan^{2} \phi_{o})/120R_{o}N_{o}^{3}] \times 10^{32},$$
where $R_{o} = \frac{a(1-e^{2})}{(1-e^{2} \sin^{2} \phi_{o})^{3/2}}$ and $N_{o} = \frac{a}{(1-e^{2} \sin^{2} \phi_{o})^{1/2}}$

In the formula for computing R, the map radius. s is the length of the meridional arc from ϕ_0 to ϕ . The constant 101.2794065 is the length, in feet, of one second of arc on a sphere whose circumference equals the meridional arc of the Clarke 1866 ellipsoid. Although the last figure is truly nearer 4, the figure 5 is used in the equation because it was used in the original computation of the plane coordinate projection tables.

In the formula for the scale factor, k, the constant 0.00676 86580 is e^2 , and the constant 20,925,832.16 is a in feet.

The exact formula for factor L_{10} is

$$\frac{(5R_o - 4N_o) \tan \phi_o}{24R_o^2 N_o^2} \times 10^{24}$$

but the approximate form

$$\frac{\tan \phi_o}{24(R_o N_o)^{3/2}} \times 10^{24}$$

was used in the original computations except Alaska, zone 10. This approximate form is not significantly different from the exact formula since R_a and N_a are nearly the same value.

The term containing L_{11} was not used in most of the state plane coordinate projections. That is why the L_{11} values in the table of constants are listed as zero even though they would seem significant if computed from the equation for L_{11} . This term was used in Alaska, zone 10, and in the offshore zone of Louisiana because these zones have a greater latitude spread than the other projections and the term becomes significant. It is also used in the projection for Michigan, because the projection tables there were computed by electronic data processing equipment to greater precision than those of other states. For this reason the term containing L_{11} is significant and it is included in the computation.

The formulas used in this projection were obtained from SPECIAL PUBLICATION NO. 193. Their derivation may be found in SPECIAL PUBLICA-TION NO. 251.

Inverse Computation.—In the inverse computation the *L*'s are the same as in the forward computation.

The arc of the meridian from ϕ_0 to ϕ is s as before. This should really be computed by an iterative process but it seemed that the method used here would be easier to understand and follow. The value of s is converted to a corresponding rectifying latitude (actually a latitude difference) which in turn is transformed to the geodetic latitude (again a latitude difference) which is desired.

The constant 600 is introduced in the equation for ω' and cancelled by the constant 36,000 in the equation for ω'' to keep the sign of ω'' positive.

The constant 0.00987 36755 53 is the reciprocal of 101.27940 65, explained in the forward computation.

The rectifying latitude, ω , is transformed to geodetic latitude, ϕ , by an equation of the basic form: $\phi = \omega + A \sin 2\omega + B \sin 4\omega + C \sin 6\omega$. Rather than use the coefficients A, B, and C as derived in SPECIAL PUBLICATION NO. 67 for this equation, better consistency is obtained by reversing the equation used in the forward computation. This was done empirically by computing the rectifying latitudes for geodetic latitudes 30°, 40°, and 50° using the equation in the forward computation. These values were substituted in the above equation one at a time giving three equations in terms of A, B, and C. Solving these equations simultaneously gives the following results: A = +525.32950 0; B = +0.78045 9; and C = +0.00159 1. Therefore, $\phi'' = \omega'' + 525.32950$ 0 sin $2\omega + 0.78045$ 9 sin $4\omega + 0.00159$ 1 sin 6ω . This equation was changed, by the substitution of the appropriate trigonometric identities, to the form:

 $\phi'' = \omega'' + [1.047.54671 \ 0 + (6.19276 \ 0 + 0.05091 \ 2 \cos^2 \omega) \cos^2 \omega] \sin \omega \cos \omega.$

TRANSVERSE MERCATOR PROJECTION

Forward Computation. $-T_1$ is the false easting, or x coordinate. of the central meridian.

- T_2 is the central meridian expressed in seconds.
- T_3 is the degrees and minutes portion, in minutes, of the rectifying latitude, ω_0 , for ϕ_0 , the latitude of the origin. (See the derivation and explanation of ω'' under L_7 of the Lambert projection.)

 T_4 is the remainder of ω_0 , i.e., the seconds.

- T_5 is the scale along the central meridian.
- $T_6 = (1/6R_m N_m T_5^2) \times 10^{15}$. (R_m and N_m are computed for the mean latitude of the area in the zone, or projection:

$$R = \frac{a(1-e^2)}{(1-e^2\sin^2\phi)^{3/2}}, \qquad N = \frac{a}{(1-e^2\sin^2\phi)^{1/2}}.$$

In the formula for S_1 the constant 0.00676 86580 is e^2 . The constant 30.92241 724 is $a \times \text{arc } 1''$, in meters.

The constant 3.9174 is an arc-sin correction derived as follows:

$$\log \Delta \lambda = 5.88460 \ 85 + \frac{1}{2} \ \log c$$

$$\Delta \lambda = 766.670 \ (c)^{1/2}$$

$$c_{\lambda(\log)} = \frac{(\Delta\lambda)^2}{766,670^2} = 1.70130 \ 85 \times 10^{-12} \ (\Delta\lambda)^2$$

$$c_{\lambda(\text{factor})} = \frac{1.70130\ 85 \times 10^{-12}\ (\Delta\lambda)^2}{0.43429\ 448} = 3.9174 \times 10^{-12}\ (\Delta\lambda)^2$$

In the formula for S_m the constant 4.0831 is also an arc-sin correction derived as follows:

 $\log s = 5.88461 - \overline{8}.50900 + \frac{1}{2} \log c$ (See Sp. PUB. No. 8, p. 18.)

$$= 7.37561 + \frac{1}{2} \log q$$

$$s = 23,747,100 \ (c)^{1/2}$$

$$c_{s(\log)} = \frac{s^2}{23,747,100^2} = 1.77328 \ 6 \times 10^{-15} s^2$$

$$c_{s(\text{factor})} = \frac{1.77328\ 6\times10^{-15}}{0.43429\ 448}\ s^2 = 4.0831\times10^{-15}s^2$$

The reduction factor used to convert meters to feet is 3.28083 333. This value was used so that the plane coordinates computed originally by logarithms would be duplicated.

From SPECIAL PUBLICATION NO. 8,

$$C = \frac{(1 - e^2 \sin^2 \phi)^2 \tan \phi}{2a^2 (1 - e^2) \sin 1''}$$

in which the constant coefficient

$$\frac{1}{2a^2(1-e^2)\sin 1''} = \frac{1}{0.039178916 \times 10^{10}} = \frac{25.52393}{10^{10}}.$$

In the original tables for computing coordinates by logarithms, C was computed using the equation:

 $\log C_{\text{(Clarke 1866)}} = \log C_{\text{(International)}} + 22.65 + 20.11 \cos 2\phi$

(in units of the sixth decimal place). A more nearly exact equation has been determined since then, namely:

$$\log C_{\text{(Clarke 1866)}} = \log C_{\text{(International)}} + 24.76 + 20.07 \cos 2\phi.$$

Again in order to duplicate the original computations. even though not quite exact, the constant factor, C, was "corrected" by the difference between these two equations for C. Disregarding the small difference between the coefficients of $\cos 2\phi$, the main difference is 24.76-22.65 which in the sixth decimal place is 0.00000 211. the logarithm of 1.00000 486. The coefficient of C. $\frac{25.52393}{10^{10}}$, is divided by this factor to give $\frac{25.52381}{10^{10}}$. the coefficient used in the equations for ϕ_1 and ϕ_2 .

For a description of the constants in the formula for y, see the discussion for the *Lambert Projection* in this appendix.

In the formula for $\Delta \alpha$ the factor 1.9587/10¹² equals sin² 1"/12 which comes from the factor F of SPECIAL PUBLICATION NO. 8 in which

$$F = \frac{1}{12} \sin \phi' \cos^2 \phi' \sin^2 1''.$$

In the formula for k, the factor 0.00681 47849 is e'^2 which equals $(a^2 - b^2)/b^2$. The factor 881.74916 2 equals $2a^2/(1-e^2) \times 10^{12}$ where a is in feet.

Appendix

Inverse Computation. — In the inverse computation the T's are the same as in the forward computation.

0.30480 06099 is the reciprocal of 3.28083 333. 0.00987 36755 53 is the reciprocal of 101.27940 65.

For an explanation of the constants in the equation for $(\phi')''$ see the discussion for the Lambert Projection (Inverse Computation) in this appendix.

The formulas used in this projection were obtained from SPECIAL PUBLICATION NO. 193. These are approximate in that terms in the series of higher order than the third power are omitted. Their derivation may be found in SPECIAL PUBLICATION NO. 251.

ALASKA PROJECTION, ZONES 2 TO 9

The formulas for this projection are given here in general terms. except for the first term of the formula for y, and the equations for $(\omega')''$ and $(\phi')''$ in the inverse computation. The coefficients there are computed from the parameters of the Clarke Spheroid of 1866. The basic equations were obtained from DEPARTMENT OF THE ARMY TECHNICAL MANUAL No. TM 5-241-8, and their derivation may be found in SPECIAL PUBLICA-TION NO. 251. The equations have been modified so that the only trigonometric function appearing in them is the cosine. As in all state projections, the foot is equal to 1200/3937 meter exactly.

Forward Computation.—The following formulas are used for computing plane coordinates from geographic positions.

$$x = C + \frac{ak_{0} \operatorname{arc} 1'' \times 10^{4}}{(1 - e^{2})^{1/2}} \cdot \frac{\cos \phi}{(1 + e^{\prime 2} \cos^{2} \phi)^{1/2}} \cdot \frac{CM'' - \lambda''}{10^{4}} \left\{ 1 - \frac{\operatorname{arc}^{2} 1'' \times 10^{8}}{6} \left(\frac{CM'' - \lambda''}{10^{4}} \right)^{2} (1 - 2 \cos^{2} \phi - e^{\prime 2} \cos^{4} \phi) + \frac{\operatorname{arc}^{4} 1'' \times 10^{16}}{120} \left(\frac{CM'' - \lambda''}{10^{4}} \right)^{4} [1 - 20 \cos^{2} \phi + (24 - 58e^{\prime 2}) \cos^{4} \phi + 72e^{\prime 2} \cos^{6} \phi] + \dots \right\}$$

 $y = 101.269278503 [\phi'' - \omega_0'' - (1.052.893943 - 4.483386 \cos^2 \phi)$

 $+0.023559\cos^4\phi$ (1 - cos² ϕ)^{1/2} cos ϕ]

(Continued)

$$+ \frac{ak_{n} \operatorname{arc}^{2} 1'' \times 10^{*}}{2(1-e^{2})^{1/2}} \cdot \frac{(1-\cos^{2}\phi)^{1/2} \cos\phi}{(1+e^{\prime 2}\cos^{2}\phi)^{1/2}} \left(\frac{CM''-\lambda''}{10^{4}}\right)^{2} \left\{1 + \frac{\operatorname{arc}^{2} 1'' \times 10^{*}}{12} \left(\frac{CM''-\lambda''}{10^{4}}\right)^{2} (-1+6\cos^{2}\phi+9e^{\prime 2}\cos^{4}\phi) \right. \\ \left. + \frac{\operatorname{arc}^{2} 0^{*} \times 10^{*}}{12} \left(\frac{CM''-\lambda''}{360}\right)^{2} (-1+6\cos^{2}\phi+9e^{\prime 2}\cos^{4}\phi) \right. \\ \left. + 4e^{\prime 4}\cos^{6}\phi\right) + \frac{\operatorname{arc}^{4} 1'' \times 10^{16}}{360} \left(\frac{CM''-\lambda''}{10^{4}}\right)^{4} \left[1-60\cos^{2}\phi\right] \\ \left. + (120-330e^{\prime 2})\cos^{4}\phi+600e^{\prime 2}\cos^{6}\phi\right] + \dots \right\} \\ \Delta\alpha'' = (1-\cos^{2}\phi)^{1/2} \frac{CM''-\lambda''}{10^{4}} \left[10.000.0000 \right. \\ \left. + \frac{\operatorname{arc}^{2} 1'' \times 10^{12}}{3} \left(\frac{CM''-\lambda''}{10^{4}}\right)^{2} (\cos^{2}\phi+3e^{\prime 2}\cos^{4}\phi+2e^{\prime 4}\cos^{6}\phi) \right. \\ \left. + \frac{\operatorname{arc}^{4} 1'' \times 10^{12}}{15} \left(\frac{CM''-\lambda''}{10^{4}}\right)^{4} \left(3\cos^{4}\phi-\cos^{2}\phi\right) + \dots \right] \\ \left. k = k_{u} \left[1 + \frac{(1-e^{2}) \times 10^{12}}{2a^{2}k_{u}^{2}} \left(1 + e^{\prime 2}\cos^{2}\phi\right)^{2} \left(\frac{x-C}{10^{6}}\right)^{2} + \dots \right]$$

C is the false easting or x coordinate of the central meridian. k_a is the scale factor along the central meridian, e^2 equals $(a^2 - b^2)/a^2$ and e'^2 equals $(a^2 - b^2)/b^2$, where a and b are the semimajor and semiminor axes of the ellipsoid used. CM'' is the longitude of the central meridian expressed in seconds, ϕ'' is the latitude, and λ'' the longitude, both in seconds, of the point being computed.

The first term in the formula for y is the length of the meridional arc. reduced by the scale factor k_0 , from the origin to the latitude, ϕ , of the point being computed. The coefficient, 101.26927 8503, is k_0 multiplied by the length in feet of a second of arc on a sphere whose circumference equals the meridional ellipse of the Clarke Spheroid of 1866. Its formula is

$$ak_{a} \operatorname{arc} 1'' (1-n) \left(1+\frac{5}{4}n^{2}+\frac{81}{64}n^{4}+\frac{325}{256}n^{6}+\ldots\right)$$

where *n* equals (a - b)/(a + b). (See SPECIAL PUBLICATION NO. 67. p. 125.) In the projection as applied to zones 2 to 9 of the Alaska plane coordinate

Appendix

system, a is expressed in feet in all formulas, and k_0 is 0.9999. ω'' is defined by the formula:

$$\omega'' = \phi'' - \left(\frac{3}{2}n - \frac{9}{16}n^3 + \frac{3}{32}n^5 + \dots\right) \frac{1}{\operatorname{arc} 1''} \sin 2\phi + \left(\frac{15}{16}n^2 - \frac{15}{32}n^4 + \frac{135}{2048}n^6 + \dots\right) \frac{1}{\operatorname{arc} 1''} \sin 4\phi - \left(\frac{35}{48}n^3 - \frac{105}{256}n^5 + \dots\right) \frac{1}{\operatorname{arc} 1''} \sin 6\phi + \dots$$

(See SPECIAL PUBLICATION NO. 67, pp. 122-128, for the derivation.)

By substitution of the appropriate trigonometric identities, this equation reduces to the following equation in terms of the cosine function of ϕ .

$$\omega'' = \phi'' - \left[\left(3n + \frac{15}{4} n^2 + \frac{13}{4} n^3 - \frac{15}{8} n^4 - \frac{291}{128} n^5 + \frac{135}{512} n^6 + \cdots \right) \frac{1}{\operatorname{arc} 1''} - \left(\frac{15}{2} n^2 + \frac{70}{3} n^3 - \frac{15}{4} n^4 - \frac{105}{8} n^5 + \frac{135}{256} n^6 + \cdots \right) \frac{1}{\operatorname{arc} 1''} \cos^2 \phi + \left(\frac{70}{3} n^3 - \frac{105}{8} n^5 + \cdots \right) \frac{1}{\operatorname{arc} 1''} \cos^4 \phi \right] (1 - \cos^2 \phi)^{1/2} \cos \phi$$

The three expressions involving n, divided by arc 1", reduce to: 1,052.89394 3; 4.48338 6; and 0.02355 9 for computations based on the Clarke Spheroid of 1866. Arc 1" is introduced here because the original derivation is in radians. In computing $\omega_0^{"}$, ϕ is 54° since that is the latitude of the origin of this projection.

Inverse Computation. – The following formulas are used for computing geographic positions from plane coordinates.

 $(\omega')'' = \omega_0'' + 0.00987 46630 2498 y$

 $(\phi')'' = (\omega')'' + (1.047.54669 \ 1 + 6.19301 \ 1 \ \cos^2 \omega'$

 $+0.05069 \ 9 \ \cos^4 \omega') (1 - \cos^2 \omega')^{1/2} \ \cos \omega'$

$$\phi'' = (\phi')'' - \frac{(1-e^2) \times 10^{12}}{2 a^2 k_o^2 \operatorname{arc} 1''} \left(\frac{x-C}{10^6}\right)^2 (1+e'^2 \cos^2 \phi')^2 \left(\frac{1}{\cos^2 \phi'}\right)^2 \left(\frac{1}{\cos^$$

$$Plane Coordinates by Data Processing
-1)^{12} \left\{ 1 - \frac{(1-e^2) \times 10^{12}}{12a^2k_a^2} \left(\frac{x-C}{10^6} \right)^2 \left[2 - 6e^{i_2} + \frac{3}{\cos^2 \phi'} + (12e^{i_2} - 9e^{i_4}) \cos^2 \phi' + 6e^{i_4} \cos^4 \phi' \right] + (12e^{i_2} - 9e^{i_4}) \cos^2 \phi' + 6e^{i_4} \cos^4 \phi' \right] + \frac{(1-e^2)^2 \times 10^{24}}{360a^4k_a^6} \left(\frac{x-C}{10^6} \right)^4 (1 + e^{i_2} \cos^2 \phi') \left(16 - 72e^{i_2} + \frac{45}{\cos^4 \phi'} - \frac{45e^{i_2}}{\cos^4 \phi'} + 224e^{i_2} \cos^2 \phi' \right) + \dots \right\}$$

$$\lambda'' = CM'' - \frac{(1-e^2)^{1/2} \times 10^6}{ak_a \arctan''} \cdot \frac{(1+e^{i_2} \cos^2 \phi')^{1/2}}{\cos \phi'} \left(\frac{x-C}{10^6} \right) \left[1 - \frac{(1-e^2) \times 10^{12}}{6a^2k_a^2} (1 + e^{i_2} \cos^2 \phi') \left(\frac{x-C}{10^6} \right)^2 \left(-1 + \frac{2}{\cos^2 \phi'} - \frac{1}{2}e^{i_2} \cos^2 \phi' \right) + \frac{(1-e^2)^2 \times 10^{24}}{120a^4k_a^4} (1 + e^{i_2} \cos^2 \phi')^2 \left(\frac{x-C}{10^6} \right)^4 \left(1 + 8e^{i_2} + \frac{24}{\cos^4 \phi'} - \frac{20}{\cos^2 \phi'} - 2e^{i_2} \cos^2 \phi' \right) + \dots \right]$$

The constant 0.00987 46630 2498 is the reciprocal of 101.26927 8503. the derivation of which is explained in the discussion of the forward computation. The constants in the equation for $(\phi')''$ were derived from the general equation

 $\phi'' = \omega'' + (1 + B\cos^2\omega + C\cos^4\omega)(1 - \cos^2\omega)^{1/2}\cos\omega.$

The constants A, B, and C were computed empirically as follows. Using the equation in the forward computation, the values of ω'' were computed for the following values of ϕ : 30°, 40°, 50°, 60°, and 70°. These values substituted in the general equation gave five equations in three unknowns (A, B, and C). These equations were solved by a least squares solution to obtain the constants used in the equations for $(\phi')''$.

With some modification, the formulas for Alaska Zones 2 to 9 may be used to compute universal transverse Mercator (UTM) coordinates. The

Appendix

constants containing the factor a (excepting n) must be recomputed using meters instead of feet. Constants containing k_0 must be recomputed using 0.9996 instead of 0.9999 for k_{a} . The false easting, or x coordinate, of the central meridian will be a constant 500.000 meters. Since the origin of the UTM projection is at the Equator the values of ϕ_{μ} and ω_{μ} will be zero.

ALASKA PROJECTION, ZONE 1

The formulas given, in the preceding text, for this projection are variations of those appearing in PUBLICATION 65-1, PART 49 and in SPECIAL PUBLICATION NO. 251 which are as follows.

Forward Computation. – The skew coordinates u, v are computed by the formulas:

$$\tan (Bu/Ak_c) = \frac{\cos \alpha_o \sinh (B\mu + C) - \sin \alpha_o \sin B(\lambda - \lambda_o)}{\cos B(\lambda - \lambda_o)}$$

$$\tanh (Bv/Ak_c) = \frac{-\cos \alpha_o \sin B(\lambda - \lambda_o) - \sin \alpha_o \sinh (B\mu + C)}{\cosh (B\mu + C)}$$

The u and r coordinates are converted to x and y coordinates by rotation and translation of the plane coordinate axes.

Convergence, γ

$$\tan \gamma = \frac{4 \tan \alpha + 3}{4 - 3 \tan \alpha}$$

where

3 1

where
$$\tan \alpha = \frac{\tan \alpha_o - \sin B(\lambda - \lambda_o) \sinh (B\mu + C)}{\cos B(\lambda - \lambda_o) \cosh (B\mu + C)}$$

Scale factor. k

$$k = \frac{k_c A \cos (Bu/4k_c)}{N \cos \phi \cos B(\lambda - \lambda_a)}$$

Inverse Computation. – Plane coordinates in x and y are converted to u and v coordinates, and the corresponding geographic position is computed by the following formulas.

 $\tanh (B\mu + C) = \frac{\cos \alpha_0 \sin (Bu/Ak_c) - \sin \alpha_0 \sinh (Bv/Ak_c)}{\cosh (Bv/Ak_c)}$

 $\tan B(\lambda - \lambda_o) = \frac{-\cos \alpha_o \sinh (Bv/Ak_c) - \sin \alpha_o \sin (Bu/Ak_c)}{\cos (Bu/Ak_c)}$

An explanation of the projection and definitions of the constants in these formulas are given in PUBLICATION 65-1, PART 49.

ST. CROIX PROJECTION

The projection for St. Croix is the same as the one used for Puerto Rico and the Virgin Islands, with one exception. The y values have been increased by 100,000.00 feet so that all y coordinates on St. Croix will be positive.

GUAM PROJECTION

The plane coordinates of the geodetic stations on Guam were obtained by first computing the geodetic distances and azimuths of all points from the origin by inverse computations. The coordinates were then computed by the equations: $\Delta x = d \sin \alpha$; $\Delta y = d \cos \alpha$. This really gives a true azimuthal equidistant projection. The equations given here are simpler. however, than those for a geodetic inverse computation, and the resulting coordinates computed using them will not be significantly different from those computed rigidly by inverse computation. This is the reason it is called an approximate azimuthal equidistant projection.

The numerical constants in the following general equations (obtained from the leaflet RELATIONSHIP BETWEEN LOCAL PLANE COORDINATES AND GEOGRAPHIC POSITIONS) are for computation on the Clarke Spheroid of 1866. For the method of their derivation, refer to the section in this appendix entitled *Alaska Projection*, *Zones 2 to 9*.

GENERAL EQUATIONS

CONSTANTS

$\phi = $ latitude of station	$C_2 = y$ coordinate of origin
$\lambda = $ longitude of station	a = semimajor axis of ellipsoid
$\phi_0'' =$ latitude of origin in seconds	b = semiminor axis of ellipsoid
$\lambda_0'' = $ longitude of origin in seconds	$a^2 - \frac{a^2 - b^2}{a^2 - b^2}$
$C_1 = x$ coordinate of origin	$e^{-}=\frac{1}{a^{2}}$

 $\omega_0'' = \phi_0'' - (1,052.89394 \ 3 - 4.48338 \ 6 \cos^2 \phi_0 + 0.02355 \ 9 \cos^4 \phi_0) \sin \phi_0 \cos \phi_0$

Appendix

(North latitude, east longitude; both entered positive)

Forward Computation.—The following formulas are used for computing plane coordinates from geographic positions.

$$x = C_1 + \frac{a \operatorname{arc} 1'' (\lambda'' - \lambda''_o) \cos \phi}{(1 - e^2 \sin^2 \phi)^{1/2}} \operatorname{meters}$$

 $y = C_2 + 30.87002 482 [\phi'' - \omega_o'' - (1,052.89394 3)]$

1

 $-4.48338\ 6\ \cos^2\phi + 0.02355\ 9\ \cos^4\phi$) sin $\phi\ \cos\phi$]

+
$$\left(\frac{x-C_1}{10^4}\right)^2 \frac{(\tan \phi)(1-e^2 \sin^2 \phi)^{1/2}}{2a \times 10^{-8}}$$
 meters

Inverse Computation. – The following formulas are used for computing geographic positions from plane coordinates.

$$\omega_1'' = \omega_0'' + 0.03239\ 38839\ 0 \left[y - C_2 - \left(\frac{x - C_1}{10^4}\right)^2 \frac{(\tan \phi_0)\left(1 - e^2 \sin^2 \phi_0\right)^{1/2}}{2a \times 10^{-8}} \right]$$

 $\phi_1'' = \omega_1'' + (1,047.54669 \ 1 + 6.19301 \ 1 \ \cos^2 \omega_1 + 0.05069 \ 9 \ \cos^4 \omega_1) \sin \omega_1 \cos \omega_1$

$$\omega_2'' = \omega_0'' + 0.03239 \ 38839 \ 0 \left[y - C_2 - \left(\frac{x - C_1}{10^4}\right)^2 \frac{(\tan \phi_1) (1 - e^2 \sin^2 \phi_1)^{1/2}}{2a \times 10^{-8}} \right]$$

 $\phi_2'' = \omega_2'' + (1,047.54669 \ 1 + 6.19301 \ 1 \ \cos^2 \omega_2 + 0.05069 \ 9 \ \cos^4 \omega_2) \sin \omega_2 \ \cos \omega_2$

$$\omega_{3}'' = \omega_{0}'' + 0.03239\ 38839\ 0 \left[\gamma - C_{2} - \left(\frac{x - C_{1}}{10^{4}}\right)^{2} \frac{(\tan \phi_{2})\left(1 - e^{2} \sin^{2} \phi_{2}\right)^{1/2}}{2a \times 10^{-8}} \right]$$

 $\phi'' = \omega_3'' + (1,047.54669 \ 1 + 6.19301 \ 1 \ \cos^2 \omega_3 + 0.05069 \ 9 \ \cos^4 \omega_3) \sin \omega_3 \ \cos \omega_3$

$$\lambda'' = \lambda_0'' + \frac{(x - C_1) (1 - e^2 \sin^2 \phi)^{1/2}}{a \arctan 1'' \cos \phi}$$

In the equations for the inverse computation used in the Guam projection, $\omega_0^{"}$ is slightly different from the value used in the forward computation. This value was changed so that an inverse computation of the origin

will give its exact position. The reason that the inverse computation will not duplicate the position of the origin, exactly, when the $\omega_0^{"}$ in the forward computation is used, is that the numerical coefficients in the equation for $\phi_1^{"}$ are not quite exact at this low latitude, since they were computed in the latitude range from 30° to 70°. This will not affect the results, to any significant degree, within the limits of the island of Guam.

The scale factor of this projection is one (scale exact) at the origin. It is also exact along any geodetic line, actual or extended, which passes through the origin. The larger scale factors will be at the extreme edges of the island, in the direction of the circles centered on the origin. The maximum to be expected will be about 1 part in 100,000, the grid distance being greater than the geodetic.

Stream of Distances or an 19301. Performing the Color and Steam

de mille au scrittette este bert de la deserver la auger entres.

nan an a' the second second second to second the second second second second second second second second second

	ALASKA	ARKANSAS	ARKANSAS	CALIFORNIA
ZONE	10	North	South	I
CODE	5010	0301	0302	0401
	3,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	633,600.00	331,200.00	331,200.00	439,200.00
L 3	15,893,950.36	29,277,593.61	31,014,039.23	24,245,358.05
.L ₄	16,564,628.77	29,732,882.87	31,511,724.20	24,792,436.23
L ₅	.99984 80641	.99993 59370	.99991 84698	.99989 46358
L ₆	.79692 23940	.58189 91407	.55969 06871	.65388 43192
L 7	3161	2126	2033	2441
L 8	47.87068	46.35656	56.94711	26.75847
L 9	3.79919	3.81452	3.81550	3.80992
L 10	5.91550	3.26432	3.08256	3.93575
L 11	44	0	0	0

	CALIFORNIA	CALIFORNIA	CALIFORNIA	CALIFORNIA
ZONE	11	III	IV	V
CODE	0402	0403	0404	0405
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	439,200.00	433,800.00	428,400.00	424,800.00
L3	25,795,850.31	27,057,475.85	28,182,405.33	30,194,145.54
L4	26,312,257.65	27,512,992.04	28,652,931.96	30,649,424.27
Ls	.99991 46793	.99992 91792	.99994 07628	.99992 21277
Lo	.63046 79732	.61223 20427	.59658 71443	.57001 19219
L7	2336	2256	2189	2076
L8	30.81964	35.52018	10.35494	52.10305
L9	3.81147	3.81265	3.81362	3.81523
L10	3.70114	3.52998	3.39020	3.16593
L11	0	0	0	0

	CALIFORNIA	CALIFORNIA	COLORADO	COLORADO
ZONE	VI	VII	North	Central
CODE	0406	0407	0501	0502
	2,000,000.00	4,186,692.58	2,000,000.00	2,000,000.00
	418,500.00	426,000.00	379,800.00	379,800.00
	31,846,570.92	30,891,382.10	24,751,897.68	25,781,376.91
	32,271,267.72	35,055,396.31	25,086,068.20	26,243,052.74
Ls	.99995 41438	.99998 85350	.99995 68475	.99993 59117
Lo	.54951 75982	.56124 32071	.64613 34829	.63068 95773
L7	1992	2040	2406	2337
L8	00.16335	22.88096	24.62308	29.65162
L9	3.81642	3.81572	3.81044	3.81146
L10	3.00292	3.09520	3.85610	3.70326
L11	0	0	0	0

	COLORADO	CONNECTICUT	FLORIDA	IOWA
ZONE	Sout h	0600	North	North
CODE	0503		0903	1401
	2,000,000.00	600,000.00	2,000,000.00	2,000,000.00
	379,800.00	261,900.00	304,200.00	336,600.00
L₃	26,977,133.89	23,659,233.56	36,030,443.05	22,736,950.34
L₄	27,402,231.82	23,914,389.02	36,454,924.53	23,162,461.59
Ls	.99994 53995	.99998 31405	.99994 84343	.99994 53686
Lo	.61337 80528	.66305 94147	.50252 59000	.67774 45518
L7	2261	2483	1802	2551
L8	34.26662	19.67980	26.11701	20.02265
L9	3.81257	3.80929	3.81898	3.80827
L10	3.54046	4.03278	2.65643	4.19479
L11	0	0	0	0

<u>6.18.14</u>	IOWA	KANSAS	KANSAS	KENTUCKY
ZONE	South	North	South	North
CODE	1402	1501	1502	1601
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	336,600.00	352,800.00	354,600.00	303,300.00
	23,936,585.11	25,644,959.12	26,896,024.48	26,371,820.68
	24,374,096.67	25,979,068.57	27,351,521.50	26,724,051.82
	.99994 83705	.99995 68556	.99993 59200	.99996 20817
	.65870 10213	.63271 48646	.61452 81068	.62206 72671
L7	2463	2346	2266	2299
L8	22.59905	27.97215	34.41020	30.63364
L9	3.80959	3.81133	3.81250	3.81202
L10	3.98630	3.72376	3.55102	3.62113
L11	0	0	0	0

Capital A	KENTUCKY	LOUISIANA	LOUISIANA	LOUISIANA
ZONE	South	North	South	Offshore
	1602	1701	1702	1703
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	308,700.00	333,000.00	328,800.00	328,800.00
	27,467,860.75	33,624,568.36	36,271,389.3 5	41,091,749.54
	27,832,235.64	34,079,629.33	36,756,553.4 5	41,576,762.39
Ls	.99994 53808	.99991 47417	•99992 57458	.99989 47956
Ló	.60646 23718	.52870 06734	•50001 26971	.45400 68519
L7	2231	1907	1792	1612
L8	36.57874	12.68515	28.55026	59.30342
L9	3.81301	3.81758	3.81911	3.82138
L10	3.47771	2.84511	2.63885	2.27436
L11	0	0	0	25

-

1

1.1.1.1.1.1.1	MARYLAND	MASSACHUSETTS	MASSACHUSETTS	MICHIGAN
ZONE	1900	Mainland 2001	Island 2002	North 2111
Lı	800,000.00	600,000.00	200,000.00	2,000,000.00
L2	277,200.00	257,400.00	253,800.00	313,200.00
	25,989,474.99	23,111,975.14	23,784,678.44	20,041,716.18
	26,369,112.76	23,549,477.32	23,924,398.02	20,589,420.09
Ls	.99994 98485	.99996 45506	.99999 84844	.99994 10344
Lo	.62763 41196	.67172 86561	.66109 53994	.72278 99381
L ₇	2323	2523	2474	2768
L ₈	59.69369	19.53138	19.47463	22.25085
L ₉	3.81166	3.80870	3.80943	3.80501
L ₁₀	3.67392	4.12738	4.01174	4.68430
L ₁₁	0	0	0	36

and States	MICHIGAN	MICHIGAN	MINNESOTA	MINNESOTA
ZONE	Central	South	North	Central
CODE	2112	2113	2201	2202
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	303,600.00	303,600.00	335,160.00	339,300.00
	21,001,715.22	22,564,848.51	18,984,319.62	20,006,679.72
	21,594,768.40	23,069,597.22	19,471,398.75	20,493,457.15
L ₅	.99995 09058	.99994 50783	.99990 28166	.99992 20223
L ₆	.70640 74100	.68052 92633	.74121 96637	.72338 80702
L7	2687	256 4	2861	2771
L8	50.76661	22.2 393 8	24.63011	20.89747
L9	3.80622	3.80808	3.80362	3.80497
L10	4.46875	4.15706	5.01609	4.76197
L11	35	33	0	0

	MINNESOTA	MONTANA	MONTANA	MONTANA
ZONE	South	North	Central	South
CODE	2203	2501	2502	2503
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	338,400.00	394,200.00	394,200.00	394,200.00
	21,327,006.06	18,689,498.40	19,432,939.76	20,500,650.51
	21,874,349.14	19,157,874.26	19,919,806.36	21,096,820.93
Ls	•99992 20448	.99997 14855	.999992 20151	.99991 07701
Lo	•70092 77824	.74645 18080	.73335 38278	.71490 12442
L7	2661	2888	2821	2729
L8	20.12517	20.21285	21.96779	21.15820
L9	3.80662	3.80322	3.80422	3.80560
L10	4.46959	5.09490	4.90135	4.64814
L11	0	0	0	0

	NEBRASKA	NEBRASKA	NEW YORK	NORTH CAROLINA
ZONE	North	South	Long Island	3200
CODE	2601	2602	3104	
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	360,000.00	358,200.00	266,400.00	284,400.00
L 3	23,004,346.29	24,104,561.06	24,235,000.8 0	29,637,059.47
L 4	23,368,977.46	24,590,781.86	24,4 62,545.30	30,183,611.25
Ls	.99996 45501	.99992 20725	.99999 49000	.99987 25510
Lo	.67345 07906	.65607 64003	.65408 20950	.57717 07700
L7	2531	2451	2442	2106
L8	19.30504	24.68139	20.64240	51.60353
L9	3.80858	3.80977	3.80990	3.81480
L10	4.14653	3.95865	3.93780	3.22483
L11	0	0	0	0

-	NORTH DAKOTA	NORTH DAKOTA	OHIO	OHIO
	North	South	North	South
	3301	3302	3401	3402
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	361,800.00	361,800.00	297,000.00	297,000.00
	18,819,849.05	19,661,027.79	24,048,738.51	25,522,875.81
	19,215,516.01	20,086,977.18	24,559,158.47	26,027,071.12
L 5	.99993 58426	.99993 58523	.99993 91411	.99993 59346
L 6	.74413 33961	.72938 26040	.65695 03193	.63451 95439
L7	2876	2801	2455	2354
L8	22.57950	20.45445	23.48125	28.63705
L9	3.80339	3.80452	3.80971	3.81121
L10	5.05972	4.84504	3 .96 783	3.74048
L11	0	0	0	0

	OKLAHOMA	OKLAHOMA .	OREGON	OREGON
ZONE	North	South	North	South
CODE	3501	3502	3601	3602
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	352,800.00	352,800.00	433,800.00	433,800.00
L₃	28,657,871.66	30,382,831.06	20,836,250.94	22,341,309.43
L₄	29,082,831.70	30,838,032.96	21,383,852.48	22,888,667.15
Ls	.99994 54101	.99993 59432	.99989 45810	.99989 46058
Lo	.59014 70744	.56761 66827	.70918 60222	.68414 73833
L7	2161	2066	2701	2581
L8	42.56887	52.48935	22.08858	22.74104
L9	3.81402	3.81537	3.80602	3.80782
L10	3.33440	3.14645	4.57382	4.26823
L11	0	0	0	0

i.	PENNSYLVANIA	PENNSYLVANIA	SOUTH CAROLINA	SOUTH CAROLINA
ZONE	North	South	North	South
CODE	3701	3702	3901	3902
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	279,900.00	279,900.00	291,600.00	291,600.00
	23,755,351.27	24,577,800.67	30,630,125.53	32,252,126.30
	24,211,050.37	24,984,826.43	31,127,724.75	32,676,887.65
Ls	.99995 68410	.99995 95012	.99994 54207	.99993 26284
Lo	.66153 97363	.64879 31668	.56449 73800	.54465 15700
L 7	2476	2418	2053	1972
L 8	21.57953	23.87979	53.44099	3.57839
L 9	3.80940	3.81026	3.81555	3.81669
L 10	4.01753	3.88319	3.12127	2.94381
L 11	0	0	0	0

	SOUTH DAKOTA	SOUTH DAKOTA	TENNESSEE	TEXAS
ZONE	North	South	4100	North
CODE	4001	4002		4201
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	3 60,000.00	361,200.00	309,600.00	365,400.00
L3	20,922,704.09	21,993,575.61	29,010,231.09	29,456,907.29
L4	21,366,697.03	22,461,937.05	29,535,149.91	29,972,959.94
L5	.99993 91116	.99990 68931	.99994 84030	.99991 08771
Ló	.70773 81841	.68985 19579	.58543 97296	.57953 58654
L7	2694	2608	2141	2116
L8	18.93392	21.54370	44.28313	48.58548
L9	3.80612	3.80742	3.81431	3.81466
L10	4.55529	4.33519	3.29422	3.24452
L11	0	0	0	0

a galake s	TEXAS	TEXAS	TEXAS	TEXAS
ZONE	North Central	Central	South Central	South
CODE	4202	4203	4204	4205
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	351,000.00	361,200.00	356,400.00	354,600.00
	32,187,809.58	34,851,703.46	37,261,509.20	41,091,749.54
	32,691,654.54	35,337,121.23	37,807,440.38	41,576,762.39
Ls	•99987 26224	•99988 17443	.99986 32433	•99989 47956
Lo	•545 <i>3</i> 9 44146	•51505 88857	.48991 26408	•45400 68519
L7	1975	1852	1752	1612
L8	5.95074	21.62181	37.19059	59.30342
L9	3.81665	3.81832	3.81962	3.82138
L10	2.97107	2.74550	2.56899	2.33094
L11	0	0	0	0

6. S.	UTAH	UTAH	UTAH	VIRGINIA
ZONE	North	Central	South	North
CODE	4301	4302	4303	4501
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	401,400.00	401,400.00	401,400.00	282,600.00
	23,894,872.45	25,117,176.75	27,025, 95 5.35	26,230,200.09
	24,229,110.29	25,664,114.42	27,432,812.88	26,576,444.45
L5	.99995 68422	.99989 88207	.99995 12939	.99994 83859
Lo	.65935 54910	.64057 85926	.61268 73424	.62411 78597
L7	2466	2381	2258	2308
L8	21.96231	29.30066	34.16878	30.78682
L9	3.80955	3.81081	3.81262	3.81189
L10	3.99323	3.80024	3.53414	3.64047
L11	0	0	0	0

	VIRGINIA	WASHINGTON	WASHINGTON	WEST VIRGINIA
ZONE	South	North	South	North
CODE	4502	4601	4602	4701
L 1	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
L 2	282,600.00	435,000.00	433,800.00	286,200.00
L 3	27,434,800.06	18,798,081.67	19,832,653.52	25,305,029.12
L 4	27,811,312.71	19,205,863.43	20,289,119.60	25,715,126.55
Ls	.99994 54027	.99994 22551	.99991 45875	.99994 07460
Lo	.60692 48249	.74452 03390	.726 <i>3</i> 9 57947	.63777 29696
L7	2233	2878	2786	2368
L8	36.41072	22.15711	21.72121	57.52979
L9	3.81298	3.80336	3.80474	3.81099
L10	3.48187	5.06556	4.80336	3.77244
L11	0	0	0	0

00 100	WEST VIRGINIA	WISCONSIN	WISCONSIN	WISCONSIN
ZONE	South	North	Central	South
CODE	4702	4801	4802	4803
	2,000,000.00	2,000,000.00	2,000,000.00	2,000,000.00
	291,600.00	324,000.00	324,000.00	324,000.00
	26,639,323.45	20,124,133.05	21,050,746.99	22,161,432.25
	27,070,620.78	20,489,179.67	21,430,913.91	22,672,134.66
Ls	:99992 56928	.99994 53461	•99994 07059	•99993 25474
Ló	.61819 5 <i>3</i> 9 <i>3</i> 6	.72137 07913	•70557 66312	•68710 32423
L7	2282	2761	2683	2595
L8	33.82207	19.04034	48.81363	20.01691
L9	3.81227	3.80511	3.80628	3.80761
L10	3.58491	4.73451	4.52782	4.30274
L11	0	0	0	0

.

	ALABAMA	ALABAMA	ALASKA	ARIZONA
ZONE	East	West	2 to 9	East
CODE	Olûl	0102	5002 to 5009	0201
T_1	500,000.00	500,000.00		500,000.00
T_2	309,000.00	315,000.00		396,600.00
T ₃	1822	1792		1852
T ₄	21.00903	25 .5338 6		16.62358
T₅	.999996 00000	.99993 33333		.99990 00000
T ₆	.38170 65	.38174 77		.38164 85

CONSTANTS FOR TRANSVERSE MERCATOR PROJECTION

* Constants are listed with formulas in the text.

	ARIZONA	ARIZONA	DELAWARE	FLORIDA
ZONE	Central	West	0700	East
CODE	0202	0203		0901
T_1	500,000.00	500,000.00	500,000.00	500,000.00
T_2	402,900.00	409, 500.0 0	271,500.00	291,600.00
T3	1852	1852	2271	1453
T4	16.62358	16.62358	30.53702	26.09287
T 5	.99990 00000	.99993 33333	.99999 50281	.99994 11765
T 6	.38164 85	.38159 48	.38114 54	.38210 90

	FLORIDA	GEORGIA	GEORGIA	HAWAN
ZONE	West	East	West	1
CODE	0902	1001	1002	5101
T_1	500,000.00	500,000.00	500,000.00	500,000.00
T_2	295,200.00	295,800.00	303,000.00	559,800.00
T ₃	1453	1792	1792	1124
T ₄	26.09287	25.53386	25 . 53386	<i>3</i> 9.52714
T 5	.99994 11765	.99990 00000	.99990 00000	.99996 66667
T 6	.38210 90	.38175 93	.38175 93	.38264 96

	HAWAII	HAWAII	HAWAII	HAWAII	
ZONE	2	3	4	5	
CODE	5102	5103	5104	5105	
T ₁	500,000.00	500,000.00	500,000.00	500,000.00	
T ₂	564,000.00	568,800.00	574,200.00	576,600.00	

6.77497

.999999 00000 .38251 76 1303 57.83623

.99999 00000 .38248 12

1264

1214 18.21554

•99996 66667 •38257 62

 T_3 T_4

T 5 T 6

CONSTANTS FOR TRANSVERSE MERCATOR PROJECTION

	IDAHO	IDAHO	IDAHO	ILLINOIS
ZONE	East	Central	West	East
CODE	1101	1102	1103	1201
T_1	500,000.00	500,000.00	500,000.00	500,000.00
T_2	403,800.00	410,400.00	416,700.00	318,000.00
T_3	2491	2491	2491	2191
T_4	18.35156	18.35156	18.35156	37.04639
T 5	.99994 73684	.99994 73684	.99993 33333	.999997 50000
T 6	.38076 24	.38076 24	.38062 27	.38110 74

	ILLINOIS	INDIANA	INDIANA	MAINE
ZONE	West	East	West	East
CODE	1202	1301	1302	1801
T_1	500,000.00	500,000.00	500,000.00	500,000.00
T_2	324,600.00	308,400.00	313,500.00	246 ,60 0.00
T 3	2191	2241	2241	2621
T 4	37.04639	32 . 84965	32.84965	15.15187
T 5	.99994 11765	.99996 66667	.99996 66667	.99990 00000
T 6	.38113 32	.38110 64	.38110 64	.38061 80

1294 0.05280

•99999 99999 •38248 67

CONSTANTS FOR TRANSVERSE MERCATOR PROJECTION

	MAINE	MICHIGAN	MICHIGAN	MICHIGAN
ZONE	West	East	Central	West
CODE	1802	2101	2102	2103
T ₁	500,000.00	500,000.00	500,000.00	500,000.00
T ₂	252,600.00	301,200.00	308,700.00	319,500.00
T ₃	2561	2481	2481	2481
T ₄	16.25668	18.72150	18.72150	18.72150
T 5	.999996 666667	.999994 28571	.99990 90909	.99990 90909
T 6	.38065 75	.38072 83	.38075 41	.38053 61

	MISSISSIPPI	MISSISSIPPI	MISSOURI	MISSOURI
ZONE	East	West	East	Central
CODE	2301	2302	2401	2402
T ₁	500,000.00	500,000.00	500,000.00	500,000.00
T ₂	319,800.00	325,200.00	325,800.00	333,000.00
T ₃	1772	1822	2141	2141
T ₄	28.62716	21.00903	41.66790	41.66790
T 5	.999996 00000	.99994 11765	.99993 33333	.99993 33333
T 6	.38172 57	.38169 86	.38126 43	.38124 22

	MISSOURI	NEVADA	NEVADA	NEVADA
ZONE	West	East	Central	West
CODE	2403	2701	2702	2703
T ₁	500,000.00	500,000.00	500,000.00	500,000.00
T ₂	340,200.00	416,100.00	420,000.00	426,900.00
	2161	2076	2076	2076
	39.76857	48.30429	48.30429	48.30429
T ₅	.999994 11765	.99990 00000	.99990 00000	.99990 00000
T ₆	.38123 62	.38123 11	.38123 11	.38123 11

Table of Constants

	NEW HAMPSHIRE	NEW JERSEY	NEW MEXICO	NEW MEXICO
ZONE CODE	2800	2900	East 3001	Central 3002
T_1	500,000.00	2,000,000.00	500,000.00	500,000.00
T_2	258,000.00	268,800.00	375,600.00	382,500.00
T₃	2541	2321	1852	1852
T₄	16.76677	27.02745	16.62358	16.62358
T5	•99996 66667	.999997 50295	.99990 90909	.99990 00000
T6	•38073 27	.38108 45	.38161 35	.38162 04

CONSTANTS FOR TRANSVERSE MERCATOR PROJECTION

and a state of the	NEW MEXICO	NEW YORK	NEW YORK	NEW YORK
ZONE	West	East	Central	West
	3003	3101	3102	3103
T_1	500,000.00	500,000.00	500,000.00	500,000.00
T_2	388,200.00	267,600.00	275,700.00	282,900.00
T ₃	1852	2 3 91	2391	2391
T ₄	16.62358	22.84247	22.84247	22.84247
T 5	.99991 66667	.99996 66667	.99993 75000	.99993 75000
T 6	.38162 88	.38083 77	.38084 50	.38087 50

	RHODE ISLAND	VERMONT	WYOMING	WYOMING
ZONE	3800	4400	East 4901	East Central 4902
T ₁	500,000.00	500,000.00	500,000.00	500,000.00
T ₂	257,400.00	261,000.00	378,600.00	386,400.00
T 3	2456	25 41	2431	2431
T 4	19.72344	16.76677	20.83533	20.83533
Ts	.99999 37500	.99996 42857	.99994 11765	.999994 11765
To	.38092 20	.38074 20	.38084 22	.38084 22

۱

CONSTANTS FOR TRANSVERSE MERCATOR PROJECTION

2012/11/1	WYOMING	WYOMING	
ZONE CODE	West Central 4903	West 4904	
T_1 T_2	500,000.00 391,500.00	500,000.00 396,300.00	
T ₃ T ₄	24 <u>31</u> 20.83533	2431 20.83533	
T ₅ T ₆	.99994 11765 .38084 22	.99994 11765 .38084 22	10.0

ZONE CODE	8 a (2), 25 (3), 67 (1000 1000 1000	3 (ph	
$\begin{bmatrix} \mathbf{T}_1\\ \mathbf{T}_2 \end{bmatrix}$			8	
T ₃ T ₄		4. 12 (12 147		
T 5 T 6	17 × 36			

ZONE CODE	5. Galis		
T_1 T_2		3 00.00 3 0.00	
T 3 T 4	2. 		