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Abstract-A new method for computing absolute 
(unambiguous) levels of Total Electron Content (TEC) and 
subsequently the L1 and L2 phase delays of GPS is presented.  
Unlike previous computational methods, this one relies solely 
upon dual frequency, ambiguous carrier phase data without any 
reliance on pseudo-range, a-priori values or other external 
information.  The only requirements for this method are that the 
ionosphere is assumed to lie in a two-dimensional shell of 
constant ellipsoidal height, and that the GPS data come from a 
network of ground stations, geographically separated so as to 
allow satellites to be viewed by a variety of stations at 
overlapping times. 

 The usefulness of this method and its application 
toward nowcasting and forecasting of the ionosphere are also 
discussed. 

 
I. INTRODUCTION 

 
 It is a well accepted fact that dual-frequency carrier 
phase data is currently the most accurate data for computing 
precise positions with the Global Positioning System.  
However, both integer ambiguities and the Total Electron 
Content (TEC) along the receiver-satellite path are 
frequency dependent; and both of these values prevent an 
absolute and immediate computation of precise position 
from carrier phase data alone.  
 Many methods exist for either removing the 
ionosphere, or mixing in pseudo-range data, or computing 
both ambiguities and ionosphere delay using lengthy 
observing sessions.  However, in this paper, a method for 
unambiguously computing the absolute level of TEC, from 
a network of ground stations and only using ambiguous 
carrier phase data is being presented.  With TEC data 
computed, the burden of determining integer ambiguities 
should be significantly reduced [1,2].  In most studies, 
however, the presumption is that data, including the 
ionosphere, are processed in double difference mode.  This 
study goes beyond that, actually computing absolute values 
of TEC from ambiguous carrier phase data. 
 While the method presented does require the 
assumption of a two-dimensional “shell model” of the 
ionosphere, independent checks confirm that the data 
coming from this method are generally accurate, though 
with some study still needed to resolve some discrepancies 

with coarse global ionosphere models.  The method 
presented is fast, and can be kept updated over time using a 
sequential least squares adjustment as the data change (as 
new satellites rise and old ones set). 
 

II. ASSUMPTIONS AND DEFINITIONS 
 

This paper makes use of the simple shell model of the 
ionosphere.  In this model, the three-dimensional 
ionosphere, with TEC measured in electrons/m3, is 
compressed to a shell at a fixed ellipsoidal height (often 
picked as the location approximating the largest real density 
of electrons).  The compression takes place in the direction 
perpendicular to the shell and leaves the ionosphere with a 
TEC that is expressed in electrons/m2 (see Figure 1).  For 
this paper, the shell is fixed at a height of 300 km. 
 

 
Fig. 1.  Sketch of the relationship between 3-D electron density and the 
compression to a 2-D shell, showing the definition of a pierce point. 

 
With the ionosphere shell model in place, consider 

next the line connecting a GPS receiver with a GPS satellite, 
at any given data collection epoch.  The intersection of this 
line with the ionosphere will be called a pierce point (see 
Figure 1).  If one maps the pierce points generated this way, 
from the rise of satellite above the horizon to its setting 
below the horizon, a track is generated, such as that seen in 
Figure 2. 
 



  

 
Fig. 2.  Track 10610 formed when station SBT1 tracks GPS SV 3 from rise 
to set.  Day 193 (July 12) of 2002.  Station SBT1 is shown by the large 
asterisk. 

 
Consider now a close-up on the ionosphere, at a 

particular pierce point (see Figure 3).   
 

 
Fig. 3.  Close-up of the ionosphere shell at a pierce point, showing the 
difference between the two electron densities TECS and TECR 
 

An important distinction will be made between the 
density of electrons seen along the receiver-satellite 
direction (TECS) and the density of electrons seen in a 
direction radial to the ionosphere shell (TECR).  They are 
related by the piercing angle, z’ as: 
 

'     (1) cos/ zTECRTECS =
 

It has long been understood that the phase advance (or 
negative delay) experienced by GPS receivers is a function 
of the number of electrons through which the L1 and L2 
carrier waves pass.  That is, the number of cycles of 

advance, due to the ionosphere, can be written as a function 
of TECS and frequency as: 

TECSTECS
cf

I )853.0(
1

1 =−=
κ

 (2) 

 

TECSTECS
cf

I )095.1(
2

2 =−=
κ

  (3) 

where: 
 

I1,I2  = cycles of phase delay in L1 and L2 
respectively 

 c  = speed of light [299,792,458 m / s] 
f1, f2 = frequency of L1 and L2 respectively 

[1,557,420,000 and 1,227,600,000 cyc / s]  
TECS = density of electrons in receiver-satellite 

direction in TECU (1016 elec / m2) 
 κ  = 40.3 x 1016 (m cyc2 / TECU / s2) 

 
While the ionospheric delay experienced at a receiver 

is a function of TECS, it would be most helpful to somehow 
generate a map of TECR, so that any vector connecting a 
GPS satellite to a GPS receiver, piercing the ionosphere, can 
have its TECS value (and thus its ionospheric delay) 
computed by simply knowing TECR and computing the 
piercing angle z’ from the satellite orbit. 
 As a final definition, consider the case when two 
tracks come “near” one another.  In the field of altimetry, if 
they actually crossed geographically this would be called a 
“crossover”.  In this study, however, the term crossover will 
not be applied to strict crossing, but rather to any two pierce 
points, on separate tracks, that fall within some acceptably 
small tolerance (in both space and time) of one another. 
 

III. THE MATHEMATICAL MODEL 
 

At any epoch “i”, the relationship between the 
geometric range (id) and the measured range (ir) from a GPS 
receiver to satellite can be expressed (for L1 and L2 
respectively) as: 

 

1111 / mTItcdr iiiiii +++∆+= λ   (4) 
 

2222 / mTItcdr iiiiii +++∆+= λ   (5) 
where 

r1, r2 = Measured range to satellite on L1 
and L2 respectively 

 d  = Geometric range to satellite 
c∆t  = Range error due to clock errors 
λ1, λ2 = Wavelengths of L1 and L2 

respectively 
T  = Range error due to troposphere 
m1,m2 = Range error due to carrier phase 

multipath error on L2 and L2 
respectively 



  
  
Now, presume that a GPS receiver is tracking carrier 

phase data on L1 and L2.  At acquisition of L1 and L2, it 
will compare its internal oscillator with the number of L1 
and L2 cycles received and report a more or less nonsensical 
(i.e. “ambiguous”) number of cycles.  Presuming it does not 
lose lock, it will continue to generate an internal L1and L2 
cycle count, and compare the changes in cycles of its 
internal count to those cycles received from the GPS 
satellite.  The difference between received and internal 
cycles can be interpreted as the change in measured range 
(r) due to satellite motion.  Equivalently it could be 
considered the change in geometric range (d) plus the 
change to all error sources.  Thus between two epochs i and 
j: 
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where i,j∆φ1 and i,j∆φ2are the differences, in cycles, between 
the number of L1 or L2 cycles generated inside the receiver 
with the number of cycles received from the GPS satellite, 
over the time period from epoch i to epoch j.  (This is 
basically the difference between any two observed values of 
L1 or L2 between two epochs).  Now, if one subtracts 
equation 7 from equation 6 then only frequency dependent 
terms will remain: 
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 Going forward, the assumption will be made that m1 
and m2 are small, and also that the difference between m1 
and m2 is small enough to be neglected [3,4].  Then, 
applying equations 1, 2 and 3 to equation 8 and solving for 
the TECS term we end up with the following: 
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 This equation shows that if we take the difference (in 
time) of the difference (in frequency) of L1 and L2 cycle 
changes (between internal and received) we have an 
unambiguous measure of the difference (in time) of the 
electron density as seen along the receiver-satellite path 
(TECS).   What this means is that if we plot a curve of 
TECS versus time for a particular track, we know the shape 
of TECS for that track, but we are missing a single bias 
which would define the absolute values of TECS for that 

track.  This is exemplified in Figure 4 where five (of an 
infinite number) of TECS curves have been drawn for one 
particular track (designated number 10,610 of some 12,585 
tracks during the day).  Note that all 5 curves have the same 
shape, but with an unknown absolute value.   
 

 
Fig. 4.  Five possible versions of TECS for track 10610 showing identical 
shape, but variable absolute values. 
 
 Remember that the goal of this paper is to model 
TECR values, not TECS.  An equation for ∆TECR as a 
function of ∆TECS can be written as: 
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 The disconcerting conclusion of equation 10 is that we 
may not simply determine the unambiguous temporal 
changes of TECR along a track the way we did for TECS 
(the dependence of i,j∆TECR upon iTECS causes the 
ambiguity).   This ambiguity, arising from the cos z’ 
mapping between TECS and TECR prevents us from 
determining even the shape of TECR curves, let alone their 
absolute values.  This is shown in Figure 5 where the five 
TECR curves corresponding to the five TECS curves of 
Figure 4 are plotted.  Notice that they are not parallel curves 
(like TECS was), but rather have shapes that depend upon 
their absolute values.   
 While this at first may seem a point of difficulty, as it 
turns out the non-uniqueness of the shape of TECR curves is 
exactly the key information needed to determine 
unambiguous TECR data from a network of GPS stations.  
The basic idea is explained below. 
 



  

 
Fig. 5.  Five possible versions of TECR for track 10610 (corresponding to 
the TECS curves of figure 4) showing differing shapes dependent upon 
absolute values. 
 
 Consider the case of 3 GPS tracks (call them 1,2 and 
3), generated by 3 GPS/receiver combinations, and 
distributed in such a way that the 3 tracks have 3 crossovers 
(call them A, B and C), effectively forming a “triangle” on 
the ionosphere shell (see Figure 6).   
 

 
Fig. 6.  A “triangle” formed by 3 tracks and 3 crossovers. 
 

As previously stated, we know the shape of the TECS 
curve along each of the three tracks, but do not know the 
absolute value.  Put another way, each of the 3 tracks (1, 2 
and 3) has 1 unknown bias (b1, b2 and b3).  In fact, let’s 
define bi as the actual value of TECS on track i at the very 
first point on that track.  If we knew that bias, we could 
compute the absolute values of TECS (because we know 
∆TECS along the track) and knowing the absolute levels of 
TECS we can compute the absolute levels of TECR.   So in 
this example, 3 tracks mean 3 unknowns.  But how do we 
solve for them?  As it turns out, each crossover acts as a 
unique constraint for the system.  The three crossovers at A, 
B and C provide the following constraints on the system: 
 

)(31 TECRTECRTECR AAA ==   (11) 

)(21 TECRTECRTECR BBB ==   (12) 

)(32 TECRTECRTECR CCC ==   (13) 
 
 That is, the TECR values at a crossover must be 
unique, independent of track.  Notice that while all of our 
actual track information is in the form of ∆TECS values, the 
actual constraints on the system are on TECR.  So, in the 
notation used above, let’s write out the conversion from 
TECR to TECS and see how the unknown biases fit into the 
picture: 
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Substituting equations 14-19 into equations 11-13, and 
converting to matrix (Y=A X) form yields: 
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 This system of linear equations has a similarity to 
those used, for example, in solving altimetric crossovers or 
geodetic leveling problems.  In the case of altimetry and 
geodetic leveling however, the A matrix contains only +1, -
1 and 0 and is thus non-invertible without additional 
constraints.  In contrast, the cosines in our A matrix allow 
for an inversion.  In simplest terms, this means that even 
though we only know ∆TECS (that is, the shape or temporal 
changes of TECS) on a track and we only know that TECR 
must be identical at the crossovers (independent of track), 
we can compute one unique absolute value of TECS at the 
beginning of each track (b1, b2 and b3).  Knowing this value, 
we are then able to compute all TECS values for the entire 
track and subsequently all absolute TECR values for the 
entire track.   
 Therefore, within the confines of our opening 
assumptions, an unambiguous solution for TECR, based 



  
solely on ambiguous carrier phase data, has been found.  It 
is entirely due to the (cos z’) mapping between TECS and 
TECR that this is possible.  As it turns out, this 
mathematical relationship holds for any number of tracks 
that form a closed polygon, not just for triangles, since the 
number of sides (tracks) of a polygon must equal the 
number of vertices (crossovers), and thus would provide a 
unique and solvable system. 
 However, while the above triangular example offers a 
unique solution, it offers no redundancy.  But if the situation 
is made just slightly more complex, say by adding a 4th 
track, crossing tracks 1 and 2 at points D and E respectively 
(forming another triangle, with common vertex B) we begin 
to build up redundancy.  See Figure 7.  
 

 
Fig. 7.  Adjoining “triangles” showing 4 tracks (unknowns) and 5 
crossovers (observations) and thus redundancy 
 

In this case, we now have 4 tracks (with unknowns b1, 
b2, b3 and b4) but 5 crossovers (observation equations), and 
thus a Least-Squares Adjustment (LSA) can be performed 
on this redundant system.  This buildup of redundancy 
grows as the number of tracks grows, since each new track 
can be expected to cross more and more existing tracks, 
adding multiple crossovers (observations) to the system 
while only adding 1 unknown bias for the new track. 
 Given the fact that a complex network of tracks should 
yield more crossovers than tracks, it seems that the ideal 
application of this model is toward a large network of dual 
frequency carrier phase GPS receivers, which are 
continuously operating and spaced geographically so that 
their tracks cross, but offer some wide spatial distribution in 
the ionosphere. 
 

IV. THE CORS NETWORK 
 

 The National Geodetic Survey (NGS), part of the 
National Oceanic and Atmospheric Administration 
(NOAA), coordinates a network of continuously operating 
reference stations (CORS) that provide GPS carrier phase 
and code range measurements in support of 3-dimensional 
positioning activities throughout the United States and its 
territories (see Figure 8).  

 

 
Fig. 8.  The CORS Network 

 
The CORS system benefits from a multi-purpose 

cooperative endeavor involving many government, 
academic, commercial and private organizations.  New sites 
are evaluated for inclusion according to established criteria.  
The data are collected at various rates (1, 5, 10 or 30 
seconds) and then transmitted (with varying latencies) to 
NGS for coordinate computation, data distribution and 
archival.  However, these data are also perfect for modeling 
the ionosphere using the mathematical model outlined in the 
previous section.  

 
A.  Data collection and cleaning 
 For the results presented in this paper, data from day 
193 (July 12) of 2002 were used, when CORS had 307 
stations collecting data. 
 The data were collected from the CORS archive, in 
RINEX (Receiver Independent Exchange) format.  Then the 
raw carrier phases were transformed into ∆TECS data, 
cleaned and sorted into tracks.  
 Each CORS station has one RINEX file for the 24 
hour period of day 193, year 2002.  The data for each 
individual satellite were collected together first, then points 
missing either L1 or L2 were thrown out.  A ten degree 
vertical angle cut off was used to maximize both crossovers 
and spatial distribution and also so the impact of points low 
to the horizon might eventually be studied.  Tracks with 
fewer than 10 successive data epochs were considered too 
short to be useful and were dropped. 
 For the remaining tracks, the ∆TECS values were 
computed using equation 9.  These data then were 
investigated for cycle slips by discarding any ∆TECS values 
which were considered physically or statistically unrealistic.  
For this study, “physically unrealistic” was set at 0.2 
TECUs / km (Paul Spencer, NOAA, personal 
communication).  Gradients exceeding this value were 
fixed, if possible, using weighted averages of neighboring 
gradients on the same track.  



  
 Finally, any loss of data for longer than 5 minutes 
constituted the end of one track.  The “cleaned” gradients, 
for the single CORS/Satellite combination were then given 
unique track numbers, and the next CORS/Satellite 
combination was similarly processed.  All in all, the number 
of “cleaned” tracks for this one day was 12,585, averaging 
about 1008 points (data epochs) per track. 
 

V. INITIAL TESTS 
 

 To test the rigor of the mathematical model of section 
III, small tracknets (groups of tracks connected via 
crossovers) were formed and their biases solved in a LSA.  
Then the modeled TECR values were converted to double-
difference (DD) values and compared to independently 
computed double-differenced (DD)  TECR values found 
through DD solutions at the Geosciences Research Division 
of NGS (G. Mader, NOAA, personal communication).  A 
variety of LSA methods were tested.  Presuming some 
closed polygon could be found in the tracknet, then no a-
priori information was needed in the LSA, and the carrier-
phase data could entirely control the absolute level of TECR 
in the adjustment.  However, it was seen as useful to 
determine the impact of some a-priori information, since 
this would be needed in any LSA of a tracknet where no 
closed polygon of tracks could be formed, or even in a case 
where a-priori information might be desired, though not 
necessary.  This second case presumes that the a-priori 
information is reliable and will add useful information to the 
LSA.   
 A-priori information on the TECS biases for each track 
can be obtained most quickly through a fitting of carrier 
phase TECS data to pseudo-range TECS data.  However, 
this presumes that the pseudo-range data is available (not 
always true) and that the multi-path errors average to zero 
(generally not true) so that the mean offset of phase and 
pseudo-range would be an unbiased estimate of the true bias 
in the phase-based TECR values.  Considering the number 
of possible biases in pseudo-range data, it is not totally 
surprising that the results using only the carrier phase data 
generally ended up better than those that introduced a-priori 
information from phase/pseudo-range fitting. 
 Figures 9 and 10 show two different examples of 
phase/pseudo-range fitting.  In Figure 9, one can clearly see 
that the phase data fits very accurately through the highly 
noisy pseudo-range data; though, considering how noisy the 
pseudo-range data are, it’s difficult to know what non-zero 
biases are hidden in that data set.  In Figure 10, we can see 
that the fit is even less clean and further calls into question 
the usefulness of a phase/pseudo-range a-priori estimate. 
 

 
Fig. 9.  A good fit between phase and pseudo-range based TECS values on 
track 174. 
 

 
Fig. 10.  A poor fit between phase and pseudo-range based TECS values on 
track 8366. 
 
 Many small (10-100 tracks) tracknets were formed and 
tested before moving on to a larger adjustment.  These tests 
served mostly to prove the methodology, rather than provide 
significant insight into the ionosphere itself.  All results 
were similar, therefore only one example will be presented 
here. 
 A pair of stations, viewing a pair of satellites were 
chosen to form a double difference.  In this example, they 
are CORS stations GODE and RED1, receiving data from 
GPS SV1 and SV2.  The four tracks (designated 4300, 
4303, 9484 and 9487) formed by combining the 2 stations 
and the 2 satellites will be called the “DD tracks”.  It is the 
intention of this small adjustment to investigate the best way 
to arrive at TECS values on the 4 DD tracks.  First off, it 
was necessary to find a small “net” of tracks where they are 
all interconnected and which contains the 4 DD tracks.  
Options in the adjustment are whether or not to have a 
‘closed polygon’ in the net, and whether to use none, some 
or all of the a-priori bias estimates on the tracks in the net. 
Table 1 shows the track numbers used in the tracknet.   
 



  
  TABLE 1 

BASIC STATISTICS OF ONE SMALL TRACKNET AND 4 DIFFERENT 
 SOLUTIONS FOR COMPUTING THE DOUBLE DIFFERENCE   

TECR OF TRACKS 4300/4303/9484/9487 
 

    Track used in 
solution? 

A-priori  
info used? 

Track 
# 

CORS 
name 

GPS 
SV # 

Hours 
of day 

1 2 3 4 1 2 3 4 

4300 GODE 1 0.00 - 
5.18 

x x x x x x   

4303 GODE 2 0.00 - 
5.93 

x x x x x x   

9484 RED1 1 0.04 - 
5.15 

x x x x x x  x 

9487 RED1 2 0.04 - 
6.05 

x x x x x x   

2253 CONO 22 0.00 - 
4.62 

x x x x     

10146 SHK1 1 0.04 - 
5.08 

x x x x x x   

11416 UIUC 25 0.00 - 
2.70 

x x x x     

12565 YOU1 20 0.04 - 
2.42 

x x x x x x   

2224 COLB 25 0.00 - 
2.91 

 x x x     

11580 UPO1 22 0.00 - 
4.85 

 x x x  x   

 
Four different solutions were investigated based on 

various options mentioned above, but always with the goal 
being TECR values on the four DD tracks.  Note that the 
double difference exists from GPS time 0.04h to 5.15h, 
allowing over 5 hours of continuous data for testing.  The 
first 8 tracks were chosen because they are the smallest set 
of tracks that all connect one to another, such that the 
tracknet contains all 4 DD tracks.  However, these 8 tracks 
do not form a closed polygon on the ionosphere shell; they 
contain only 7 crossovers and therefore would require a-
priori information to solve.  The additional 2 tracks (2224, 
11580) were chosen because they combine with the first 8 
tracks to form the smallest tracknet that contains all 4 DD 
tracks and contains a closed polygon.  In fact, these 10 
tracks contain 2 closed polygons1.  The 10 track tracknet 
contains 11 crossovers, and therefore could be solved 
without any a-priori information.  
 Solution 1 contained the first 8 tracks (thus no 
polygons) and a-priori estimates on all tracks that had 
pseudo-range data (6 of 8).  Solution 2 contained all 10 
tracks (thus 2 polygons) and a-priori estimates on all tracks 
that had pseudo-range data (7 of 10).  Solution 3 contained 
all 10 tracks and no a-priori estimates.  Solution 4 contained 
all 10 tracks and only one a-priori estimate (track 9484).  
These small tracknets were adjusted and biases solved for.  
The formal (a-posteriori) error estimates of the biases for 
each track, converted into cycles of delay on L1 are 
presented in Table 2. 

                                                 
1 The two polygons are 8 sided and 3 sided, respectively, 
and have the following tracks as sides: 9484-2253-10146-
11580-2224-4300-11416-12565 and 9487-10146-11580. 

 
TABLE 2 

STATISTICS OF THE FORMAL A-POSTERIORI ERRORS ESTIMATES OF TRACK-
BY-TRACK BIASES FOR THE 4 SOLUTIONS OF DD 4300/4303/9484/9487.  
UNITS ARE  TECUS.  (SEE ALSO TABLE  1) 
 

Track # Solution 1 Solution 2 Solution 3 Solution 4 
4300 ± 3.5 ± 2.9 ± 0.1 ± 1.2 
4303 ± 8.8 ± 4.7 ± 0.2 ± 2.1 
9484 ± 9.3 ± 4.6 ± 0.2 ± 2.0 
9487 ± 9.4 ± 3.1 ± 0.1 ± 1.3 
2253 ± 13.6 ± 5.9 ± 0.3 ± 2.5 
10146 ± 9.7 ± 3.3 ± 0.1 ± 1.4 
11416 ± 6.5 ± 4.9 ± 0.2 ± 2.0 
12565 ± 6.1 ± 3.9 ± 0.2 ± 1.6 
2224 - ± 4.3 ± 0.2 ± 1.7 
11580 - ± 3.0 ± 0.1 ± 1.2 

 
 One may draw some immediate conclusions from 
Table 2.  The improvement from solution 1 to solution 2 
indicates that simply having a closed polygon in the tracknet 
has stabilized the solution significantly.  Additionally, the 
improvement from solution 2 to solution 3 shows that the a-
priori information (based on pseudo-range/phase fitting) is 
actually degrading the adjustment, causing dispersion in the 
adjusted tracknet.  Leaving the a-priori data out entirely in 
solution 3 seems to strengthen the tracknet and yield a very 
rigid set of adjusted biases.  Finally, the slight degradation 
from solution 3 to solution 4 is due solely to adding just 1 
piece of a-priori information.  This further exemplifies the 
degrading nature of unnecessarily adding pseudo-range data. 

After these adjustments were performed, TECR values 
were converted to cycles of delay on L1 for the entire track, 
and double differenced.  These were then provided to GRD 
for comparison to delay estimates that came from an 
independent double-difference adjustment for the 
coordinates of GODE and RED1 (Mader, ibid).  The results 
are shown in Figure 11.  
 

 
Fig. 11.  Comparison between 4 different solutions for the DD TECR 
values and a 5th independent solution from NGS positioning software 
showing agreement between solutions 3 and 4 (yellow and dark blue)  with 
the independently computed DD TECR values (dark red). 
 



  
As seen in Figure 11, solutions 3 and 4 have the best 

agreement to the independent DD solutions, which further 
strengthens the argument that no a-priori information needs 
to be put into the modeling of the ionosphere.  The 
agreement between solution 3 and the 5th (independent) DD 
L1 delay values is at the 0.01 cycles value (RMS) and is 
remarkable, considering TECR values were first computed 
as absolute values, and then converted to DD values and 
absolutely no a-priori information was used in solution 3.   
Numerous other examples, not detailed here, were 
performed with similar conclusions. 
 

VI. FULL DAY ADJUSTMENT 
 

 With the confidence that the small tracknet adjustment 
tests provided, the next step was to attempt to compute a 24 
hour adjustment of all biases for all tracks that had at least 
one connection to a single, master tracknet.  Logical search 
operations were coded to find such a tracknet.  As it turns 
out, of the 12,585 tracks that were formed by CORS on day 
193 of 2002, there were 8298 which formed a master 
tracknet (that is any of those 8298 tracks could be traced, 
via crossovers, to any other of the 8298 tracks).  The criteria 
for a crossover was that some point on one track lay within 
a small space-time window [0.1° x 0.1° x 60 seconds] as a 
point on another track.  Of those tracks that did not connect 
to the master tracknet, most were either very short, very low 
on the horizon, provided by a distant CORS station (e.g. 
Hawaii, Alaska, Caribbean) or some combination of these 
factors. 
 Of the 8298 tracks (unknowns) that formed that master 
tracknet, there were 16,896 crossovers (constraints) , thus 
providing a very redundant system of linear equations.  
Sparse matrices were the obvious choice for this adjustment.  
Each row of the A matrix corresponded to one constraint 
(cross-over).  The only non-zero elements in any given row 
of the A matrix are in the 2 columns which correspond to 
the 2 tracks which make the crossover.  Although no 
immediate pattern of non-zero elements arises from this 
situation, we nonetheless have only 0.024% of elements of 
A that are non-zero.   
 Using the sparse matrix routines of NGS’ “HEART 
OF GOLD” software [5], this system of equations was 
solved for all 8298 track biases in  30 seconds, and the 
sparse profile elements of the dispersion matrix of the 
adjusted biases following in a further 10 minutes of 
computations.  
 Once the adjusted biases and their dispersions were 
computed, we checked the post-adjusted crossovers to see 
how well the master tracknet closed.  Table 3 shows the 
statistics of the post-fit crossovers.  Table 4 shows how well 
the formal error estimates of the adjusted biases came out. 
 

TABLE 3 
POST-FIT CROSSOVER STATISTICS FOR MASTER TRACKNET (TECUS) 

# Ave STD RMS Min Max 
16,896 -0.004 ±0.51 0.51 -3.7 +4.0 

 

TABLE 4 
STATISTICS OF A-POSTERIORI STANDARD DEVIATIONS FOR POST-FIT 
MASTER TRACKNET BIASES (TECUS) 

# Ave STD Min STD Max STD 
8298 ±1.1 ±0.22 ±10.7 

 
 In addition to these statistics, it is useful to consider 
the actual TECR values for every point on every track in the 
master tracknet.  Applying the adjusted TECS bias of each 
track to the known ∆TECS values, and then generating 
TECR values, the following statistics are found in Table 5. 
 

TABLE 5 
POST-FIT TECR VALUES FOR ENTIRE 24 HOUR MASTER TRACKNET 
(TECUS) 
# Ave STD RMS Min Max 
10,613,013 14.90 ±6.03 16.07 -7.5 +58.4 
 
 As seen in Table 5, the adjusted TECR values are 
reasonable (on average) but with poor outliers (below zero 
or above 50 TECUs).  The negative TECR values, however, 
are rare, (0.08% of all TECR values) as are those above 50.  
Aside from these outliers, we can show the generally 
believable nature of the ionosphere more clearly.  The 
adjusted TECR values were averaged in 2 hour intervals and 
plotted over 24 hours.  Additionally, values for TECR over 
the same geographic area from 5 IGS (International GPS 
Service) computational centers (COD, EMR, ESA, JPL and 
UPC) were downloaded from their archive and plotted. See 
Figure 12.   
 

 
Fig. 12.  The 5 IGS models compared to the method of this paper showing 
good agreement at night and early morning 
 

Note that the agreement is much better between this 
method and the global models at night and morning (central 
parts of plot).  The disagreements for the late afternoon (left 
side of plot) and late morning (right side of plot) could be 
due to a number of sources.  First, this method used over 
300 stations just in the USA, while all 5 global models 
averaged only 120 stations for the entire globe.  
Additionally, the geographic and temporal spacing for the 
global models was 5° x 2.5° x 2 hours, whereas this method 



  
models the ionosphere at every data epoch (1, 5, 15 or 30 
seconds) on the densely packed tracks themselves.  
Additionally, the global models assume an ionosphere shell 
height of 450 km while this study used 300 km.   Because 
the cut-off angle used in this paper was 10 degrees, the 
errors in mapping TECS to TECR via equation 1 can lead to 
errors in remote tracks, such as those over the ocean areas 
where only a few (shoreline) stations can see the rising 
satellites through the ionosphere, and then only low on the 
horizon.  Finally, the disagreement occurs during the most 
active time of the ionosphere itself as well, which also 
propagate into the errors of using equation 1. 
 Considering the good agreement between this method 
and the 5 global methods during at least the night/morning 
half of the day, and the explainable (and possibly repairable) 
sources of disagreement during the rest of the day, Figure 12 
is encouraging as a first step.  This is especially so when one 
considers that no pseudo-range fitting or other a-priori 
methods of solving for the biases were used.  At the very 
least, the method is well-suited to double difference 
ionosphere modeling, and shows great promise as a method 
for absolute ionosphere modeling, provided further study 
can be performed on the disagreements of Figure 12. 
 At this point, the ionosphere has been modeled, but at 
discrete times (data epochs) and discrete locations (tracks).  
We then turned our attention to the question of how best to 
use such data, and subsequently, how best to distribute it.  
Clearly, visualization of the ionosphere would be an aid to 
anyone interested in understanding or using this model.  
That would generally imply transforming our values onto a 
grid.  However, one of the ultimate goals of this project was 
to provide, at the best possible accuracy, values of 
ionospheric delay to surveyors using a GPS receiver in the 
field.  Going from tracks to a grid back to a surveyor’s  
track would mean two sources of interpolation error.  Going 
directly from the adjusted master tracknet to a surveyor’s 
track would seem to be a more accurate path. 
 Ultimately, both were investigated, and their 
advantages and disadvantages are discussed in the next 
sections.  
 

VII. GRIDDING 
 

 Putting aside for the moment the singular application 
of providing ionosphere delays to individual surveyors, it 
would seem that the obvious path to provide our ionosphere 
model to the general public would be in the form of a grid of 
TECR values at discrete points in time.  Such a grid lends 
itself to easy distribution, interpolation, analysis, conversion 
to other units, comparison to other ionosphere models and 
of course, visualization.  The problem of transforming 
random points to a grid has a long history.  Splines, 
collocation and polynomials all have advantages and 
disadvantages.  What was seen as important here was 
finding a method that would allow the spatial and temporal 
connections to remain in the grids, while allowing fast and 
accurate gridding.  The method chosen for this paper was 

one of many possible methods and is certainly not meant to 
be the final choice.  However, for the sake of expediency, a 
few quick experiments lead to the following scheme:  
  
 Step 1: Fit a 3-D polynomial of degree and order 1 
(called TECR0) to the TECR data: 
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 Step 2: Remove TECR0 from TECR 
 Step 3: Block-mean the residual data in blocks of size 
0.1° x 0.1°  x 15 min 
 Step 4: Transform block-means to 2-D gridded values 
every 15 minutes using splines in tension [6], and a tension 
parameter of T = 0.1 
 Step 5: Restore TECR0 to gridded residuals 
 
and, for the sake of visualization only, to avoid serious edge 
effects: 
 Step 6: Mask the final grids by using a 100km buffer 
around all φ / λ locations which had at least one pierce point 
over the 24 hour period.  
  
 One could chose many different versions of this 
scheme (different polynomial, or using an a-priori grids 
(such as the IGS global grids); a different tension parameter; 
a different size for block-means) or a different scheme 
altogether (e.g. Fourier series; Collocation).  The emphasis 
of this study is not to study which of these schemes is best – 
that will come in a future paper.  The emphasis is to show 
that even the simplest scheme can yield results that are both 
visually pleasing and statistically reasonable. 
 Figure 13 shows the final, gridded and masked 
ionosphere values for year 2002, day 193, at time 13500 sec.   
This is one of 97 grids which make up the entire 24 hour 
period.   
 

 
Fig. 13.  Modeled TECR data (masked to remove edge effects) at t=13500 
sec, with raw tracks shown for the 15 minute period surrounding this time. 
 

All 97 grids were animated, and made available at 
http://www.ngs.noaa.gov/IONO/f.gif.  Such animation 

http://www.ngs.noaa.gov/IONO/f.gif


  
serves two purposes.  It is an invaluable tool for analysis of 
actual ionospheric activity, but also allows a very quick 
method of determining outliers.  We are currently in the 
process of re-cleaning the data based on this animation and 
the information it yielded.  It should be noted that the 
resolution, in both space and time, of this ionosphere grid is 
much better than anything previously seen in global models.   
 Once the grids were computed, the question arose of 
how well we could go from a grid back to a track.  (This 
would obviously be the way our grids would be used).  
Again, we adopted the strategy of testing the simplest 
solution first, knowing that more elaborate schemes of 
interpolation should only improve upon the initial results.  
Therefore, taking the grids, and using a basic tri-linear 
interpolation of the closest 8 points, we attempted to re-
create the original adjusted master tracknet.  The statistics of 
that experiment are shown in Table 6. 
 

TABLE 6 
MISFIT OF ORIGINAL TRACKNET TO TRACKNET RE-GENERATED FROM 
GRIDDED DATA (TECUS) 

# Ave STD Min Max 
10,613,013 +0.001 ±0.38 -7.8 +8.8 

 
 As can be seen in Table 6, the ability to go from 
tracknet to grid and back to tracknet can be done, in a very 
simple method to almost perfect accuracy and with a 
precision of 0.38 TECUs.  Certainly such a precision could 
be improved with better gridding and interpolation 
algorithms, but on the other hand, even the best of these 
methods may not improve the ability to correctly predict the 
ionosphere in locations removed in space and time from the 
data of the master tracknet.  Such areas arise when GPS 
receivers are outside of (but near) the USA, or even in the 
USA itself in areas where CORS is sparse (such as the north 
central region; see Figure 8). 
 Given that the gridded data appears to be a useful for 
visualization and even a reasonable method of accessing the 
information contained on the tracks themselves, we turn our 
attention next to the possibility of accurately predicting 
ionosphere data on a track by directly interpolating  off of 
the master tracknet itself. 
 

 VIII. INTERPOLATION VIA A TIN 
 

 It was already seen that, in addition to being a good 
visual tool, a gridded ionosphere model can be a reasonable 
predictor, at least to a precision of 0.38 TECUs.  It was 
hoped that by skipping the gridding altogether, an even 
greater precision could be achieved.  The scheme relies on a 
method quite like that of a Triangulated Irregular Network 
(TIN). 
 Consider 3 CORS stations that form a triangle; inside 
this triangle is a 4th GPS receiver.  If, at the same epoch all 
four of these receivers are receiving data from the same 
GPS satellite, and if the 3 CORS stations can compute the 
ionosphere through the adjustment of the master tracknet, it 
stands to reason that we should be able to estimate what the 

ionosphere seen by the 4th GPS receiver should be, based 
on the 3 surrounding stations. 
 To test this hypothesis, each CORS station 
contributing to the master tracknet was investigated as 
follows: First, a variety of “surrounding triangles” (if any) 
were found, based on all other CORS stations in the master 
tracknet.  Four types of triangles were studied to see if the 
choice of triangle would have a noticeable advantage over 
the other types.  The four types of surrounding triangles are 
outlined in Table 7. 
 

TABLE 7 
DIFFERENT TRIANGLE TYPES FOR TIN EXPERIMENTS 
Triangle Type Description 

1 with the smallest area 
2 with the smallest maximum side 
3 with the smallest maximum distance from CORS to 

central receiver 
4 with the largest minimum angle 

 
 When the triangles were defined, the adjusted master 
tracknet was run through the comparison program.  
Basically it would make sure that all 4 CORS receivers were 
seeing the same satellite at the same epoch.  It would then 
use the TECR values from the 3 corner CORS stations to 
approximate the TECR value at the central CORS station, 
using the geometry of the triangle on the ground.  (An 
alternate, and possibly more robust, solution would be to re-
compute the triangular geometry formed by the 4 pierce 
points at every epoch, but this has the disadvantage of 
needing the relations between all 4 stations re-computed 
every epoch).  This interpolated TECR value was then 
compared with the actual value of TECR from the central 
CORS site as seen in the master tracknet.  The results are 
shown in Table 8.   
 

TABLE 8 
STATISTICS OF TRACK-REGENERATION VIA TIN METHODS, BASED ON 4 
TRIANGLE TYPES (TECUS) 
Triangle 
Type 

# points Ave STD Min Max 

1 1,950,266 -0.010 ±0.28 -10.8 +11.8 
2 2,761,325 -0.005 ±0.25 -11.1 +11.6 
3 2,569,277 -0.006 ±0.25 -11.1 +12.0 
4 1,933,781 -0.029 ±0.29 -10.2 +11.6 
 
 A few important things can be gleaned from Table 8.  
First, not every CORS station in the master tracknet could 
be surrounded by 3 other such CORS stations.  As such, 
those data were not part of this analysis.  Additionally, since 
CORS stations can have data rates of 1, 5, 15 or 30 seconds, 
it is possible for significant data to be skipped in this 
analysis if one of the CORS stations has a lower data rate 
than the other 3, since common epochs were a requirement 
for comparison. 
  Finally, it should be noted that independent of the 
type of triangle chosen, this method yields results that are 
around 0.25 TECUs, which is an improvement over the 
gridding method of section VIII.   



  
 One must be careful not to presume that the ability of 
either the gridding or TIN methods to re-create the original 
TECR data is a measure of absolute accuracy.  Certainly 
both the gridding and TIN methods have high precision, but 
the accuracy of the method itself will only come through 
independent verification of this model.  Currently, the best 
comparisons available are from coarse (in both space and 
time) global models, but the difficulties with such a 
comparison have already been outlined. 
 In the future, actual application of this method toward 
directly reducing the time needed to resolve integer 
ambiguities will be the best test and guidance for future 
directions.  
 

IX. CONCLUSIONS AND FUTURE DIRECTIONS 
 

 This paper was an introduction to a new method for 
unambiguously computing the total electron content of the 
ionosphere using ambiguous carrier phase GPS data only.  
While certain assumptions were required for this method to 
work, notably the use of the constant-height shell model, it 
nonetheless was a mathematically sound method.  There 
were no tricks, iterations or other ways to get around the 
ambiguity of carrier phase data.  Biases were found during 
daylight hours between this model and global models at the 
5+ TECU level.  But these appear to be solvable with future 
research.  Aside from these biases from the global model, 
the method in this paper appears to have a precision 
approaching 0.25 TECUs.   By converting TECUs  into 
cycles of delay on L1 and L2, we can say that the method 
described in this paper has the ability to accurately model 
the ionosphere to a precision of 0.21 cycles on L1 (~ 4.0 
cm) and 0.27 cycles on L2 (~ 6.6 cm).  When double-
differenced, a precision of 0.01 TECU was found. 
 The adjustment of thousands of crossovers for the 
solution of thousands of biases in only 30 seconds meant 
that this method can be easily adapted to a sequential least-
squares method, where old tracks can be updated and new 
tracks allowed to enter the master tracknet and sequential 
adjustments performed in sequential epochs.  All that was 
required for a track to yield valid ionosphere data was that a 
single crossover must exist between a track and the master 
tracknet.  Once the single bias for the track is known, all 
TECR values along that track are therefore determined in 
absolute value.  Whether this ionosphere model is used in a  
 
 
 
 
 
 
 
 
 
 
 
 

grid or a TIN method, its speed of computation, precision, 
and dependence on an existing GPS network make it a 
powerful new tool for ionospheric information distribution.  
But serious questions remain, all of which are slated to be 
covered in future studies.  Questions to be answered 
include: How many CORS stations are needed before no 
further ionospheric information is gained?  What is the best 
method to test and validate the data?  How does this model 
behave on days of significant ionospheric activity?  How 
can we resolve the existing discrepancies with the global 
models?  And, of greatest interest to geodesists, what 
improvement is gained in integer ambiguity resolution? 
 These questions are all valid, but the primary question 
of this study has been answered: It is mathematically 
possible, almost trivial, to compute the unambiguous value 
of TEC in the ionosphere from ambiguous carrier phase 
GPS data only.  The next phase is testing this method for 
applicability to the integer ambiguity resolution problem, 
and discovering why biases exist between this method and 
the global models. 
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