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THE BRUNS TRANSFORMATION AND A DUAL SETUP OF GEODETIC 

OBSERVATIONAL EQUATIONS 

Erik W. Grafarend1 

National Geodetic Survey 
National Ocean Survey, NOAA 

Rockville, Md. 20852 

ABSTRACT. The Bruns formula, which equates the disturbing 
gravity potential modulo the length of the normal gravity 
vector to the height anomaly, is generalized into three 
dimensions and into horizontal, equatorial, and inertial 
reference frames. It is applied to formulate the space.-1ike 
geodetic boundary value problem in geometry and gravity 
space. The Bruns transform allows a dual setup of geodetic 
observational equations in a network of mass points, the 
finite element approximation of the space-like geodetic 
boundary value problem, in the following sense: The obser
vational equations can be expressed rigorously either as a 
function of geometric coordinate corrections alone without 
any gravity dependent quantity, or alone as a function of 
the gravity disturbing potential and its gradients alone 
without any geometric coordinate correction. For opera
tional purposes, estimable quantities from reference-free 
observab1es are studied in geometry, gravity, and vorticity 
spaces. They correspond to invariants with respect to a 
linear similarity transformation typified by positional 
angles and length ratios in various vector spaces. A 
Cartesian series representation of the gravity potential and 
its gradients is given--the Cartesian coordinate system is 
known to be singu1arity-free--and is used for a unified 
Cartesian setup of observational equations. 

Iprepared during a 3-month period in 1978 when the author served as a 
Senior Scientist in Geodesy, National Research Council, National Academy of 
of Sciences, Washington, D.C., while on leave from the University FAF at 
Munich, Federal Republic of Germany. 
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Science should be the friend of practice, but not 
its slave. 

C.F. Gauss 

INTRODUCTION 

Geodesy is conventionally divided into two branches: geometric and physical. 
This separation has resulted in various geodetic schools, or research groups, 
concentrating on one or the other aspect with little intercommunication. We 
would like to show that geodesy is actually a unity. The two branches are only 
the sides of a single coin. In detail, we will prove that geodetic observa
tional equations can be uniquely set up in either the geometric or the physical 
mode. For instance, a distance observation can be expressed in terms of either 
the coordinates of the end points of a line or the gravity disturbing potential 
and its gradient at these points. The proof is based on the classic Bruns 
formula which expresses the height anomaly in terms of the gravity disturbing 
potential modulo the magnitude of the normal gravity vector. The Bruns formula 
will be generalized into three dimensions and into various reference frames: 
horizontal, equatorial, and inertial. 

To make the Bruns formula operational, we have to inject observable quantities. 
Therefore, the first section is devoted to geodetic observables. There are two 
perspectives from which to look upon geodetic observables. If we do not introduce 
an a priori reference system into the vector space of geodesy, only positional 
angles and length ratios are observable. They are invariant with respect to a 
linear similarity transformation, characterized by degrees of freedom of type 
translation, rotation, and scale. Referring to adjustment procedures, positional 
angles and length ratios are estimable quantities. This concept is applied to 
both geometric and physical space. For instance, we construct positiona'I angles 
and length ratios in gravity space from a network based on gravity vectors. The 
geometric quantities are a function of the length of the gravity vector and 
astronomical longitude and latitude at three points. 

In the second section we will derive the generalized three-dimensional Bruns 
equation from observables that are one-point functions. These can be computed 
from observations once we have established a reference system for origin, 
orientation, and scale in any geodetic vector space. The first step will be a 
transformation of one-point observables into Cartesian coordinates of points on 
the approximate surface of the Earth, the telluroid. We will use isoparametric 
mappings for astronomical longitude and latitude, gravity potential, and first
and second-order gradients. The mappings are one-to-one if we use the isotropic
or zero-order approximation of the gravity field. Uniqueness is lost if we use 
another order of approximation. The second step is formulation of the transform 
of disturbances of gravity into Cartesian coordinate corrections. 

The third section deals with a dual setup of geodetic observational equations 
of one- and three-point type, either in the geometric or in the gravitational 
space. They refer to different formulations of the Bruns transformation based 
on astronomical longitudes and latitudes and gravity potential (or gravity 
or gravity gradient). 

The appendices are a Cartesian form of series representing the gravity 
potential and its first- and second-order gradients. 
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The report reflects current research in space-time geodesy, especially with 
respect to the geodetic initial-boundary value problem and its finite element 
approximation, the setup of geodetic observational equations in networks of 
mass points. 

Section 1 is influenced by the concept of geodetic invariants introduced by 
Baarda (1973) and estimable quantities introduced by Bossler (1973) and 
Grafarend and Schaffrin (1974, 1976). The isoparametric mappings of Section 2 
which led to the formulation of the three dimensional Bruns transform have been 
partly studied by Bocchio (1976 a,b,c), Bruns (1876), Hirvonen (1960, 1961), 
Krarup (1969, 1973 a,b), Livieratos (1976, 1978), Marussi (1973, 1974 a,b), 
Moritz (1965, 1977), Niemeier (1972) and Grafarend (1972, 1975, 1978 a,b,c). 
The first setup of geodetic observational equations to be expressed rigorously 
in the gravimetric mode was by Sanso (1978 a,b) by making use of his adjoint 
potential. Here, we will reverse his argument exactly by employing the inverse 
Bruns transformation and expressing the geodetic observational potential 
rigorously in the geometric mode. 

Geodesists have hesitated to accept the new three-dimensional mapping. 
Therefore we would like to make the following comments. For two-dimensional 
cartographic mappings the isoparametric mapping is well known, e.g. Chovitz 
(1952, 1954, 1956), O'Keefe (1953), Lane (1939, p. 189), Levi-Civita (1926, 
p. 220). Let us quote from O'Keefe (1953): "It is evident that the deformations 
produced by the isoparametric method are of the same order as those produced 
by other methods." 

Another comment is on the definition of a geodetic network. Much research in 
geodesy has been performed in two-dimensional network analysis. Such networks 
are better termed mathematical networks because they do not take the gravity 
field into account. Here, a geodetic network consists of mass points; thus 
there is gravitational interaction which we cannot switch off. 

1. OBSERVABLES 

Having decided foundational questions, we next introduce related observations 
which make geodesy operational. A majority of geodesists believe that geodesy 
is Euclidean geometry referred to linear space with finite dimensions and 
Hilbertian geometry referred to linear space with infinite dimensions. What 
then are the basic observables? 

In Euclidean geodesy position is given by vectors, for instance, 

the position vector 

the gravity vector 

the vorticity vector 

moving in space-time. Let us give an illustration of these vectors, as shown 
in figure 1 (p.70). Choose an origin of reference, e.g., the geocenter. The 
position vector extends from the reference origin to a mass point in space, 
e.g., the topocenter. At this point we draw the gravity vector, the rotation 
vector, or any other vector of reference. The corresponding vector spaces are 
called 
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the geometry space, 

the gravity space, and 

the vorticity space . 

The set of all position vectors drawn from the reference origin is called the 
geometry space. Gravity space is constructed by a translation of the gravity 
vector along the position vector to the reference origin under Euclidean 
parallelism . In the same way the vorticity space or any other space of refer
ence vectors is defined . Coordinates vn of a vector yare provided after we 
select a frame of reference �n' e . g . ,  the inertial frame, such that 

N 1 
v .. L. vn

e == VO e + v !l + • • •  
n"o -n -0 

(Notation: vectors in Euclidean space are denoted by capital letters, or 
underlined small letters . )  

If the base vectors are orthonormal, 

1 (1) 

1(2) 

where 0 ij is the Kronecker symbol for an element of the unit matrix and ( . , . ) 
is the s1gn for the scalar product . Coordinates are recovered by 

(v,e ) == 
- -n 

n 
v • 

(where I I· I I is the norm sign) is the relation of completeness . 

1 (3) 

1 (4) 

It is assumed that in space-time geodesy the number of independent base vectors, 
which is identical to the dimension of the vector space,is (3,1). 
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In Hilbertian geodesy, position is given by vectors, for instance, 

the position potential, 

the gravity potential, and 

the vorticity potential. 

(In Hilbert space, potential is a vector.) 

Figure 2 (p. 70) illustrates these vectors. Coordinates vnm of 
a vector v (vectors in Hilbert space carry an overbar) are provided once we have 
select a frame of reference, e. g., 

e nm 

V2n+l -n-l P (sin cp) r 

V2(2n+l) 

V2(2n+l) 

n 

(n-m) ! 
(n+m) ! 

-n-l' r P 

(n- / m / ) ! -n-l 
(n+ / m / ) !  r 

for m=O 

(sin cp) cos mA for m>O 1 (5) nm 

P (sin nm cp) sin mA for m<O 

where Pn are Legendre and Pnm associated Legendre functions of the first kind, 
and A, cp , r spherical coordinates, such that 

v= 
00 +n 

n=o m==-n 

nrn -v e • nm 1 (6) 

Here, v is a "harmonic" function satisfying 1Iv=O, where 11 is the three-dimen
sional Laplace operator. 

If the base vectors are orthonormal, as in our example, 

(e . .  , e,.n) 1J ,IU. 1(7) 
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e. g., the integral over the unit sphere divided by 4n. Coordinates are 
reproduced by 

rv. e ) nm 

'" 
!!v!! L 

run 
v 

n=o m=-n 

1 (8) 

1(9) 

(where I I'll 12, the square of the norm, is the integral over the unit sphere of 
(v,v)/4n) is the relation of completeness. 

The earlier question about basic observables can now be answered. Assume a 
network, e.g., a triangle, being constructed in a vector space. For the depiction 
of any vector by an arrow, as in figure 3 (p. 7l),we require an origin, direction, and 
a length. To remove these artificial references for translation, rotation, and 
scale, we need quantities which are invariant with respect to changes of these 
parameters. In other words, we are looking for invariants under a similarity 
transformation 

v -+ v' T + ARv 1(10) 

where T is a translation vector, R an orthogonal matrix, and A a scale factor. 
It is well known from analytical geometry that length ratios and angles are 
dual elements of the basis of invariants under the linear similarity transfor
mation given above, e. g., 

v, /I - .. 
1(11)  

or 

1 (12) 
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Finally, we will present three examples for basic observables in the geometry, 
gravity, and vorticity spaces. 

EXAMPLE 1. 1 (geometry space) 

Let us introduce a triangle in the geometry space constructed from position 
vectors Xl' X2, X3 directed from the geocenter to three mass points in space. 

At first the network is observed by a theodolite 
tions and horizon distances (or zenith distances). 
are E I, E*, and F*, defined as follows; 

through horizontal direc
Related reference frames 

The orthonormal observational triad E' is based on the vector E3' directed 
from the station point at the topocenter to the target point. The base 
vector E2' is the normalized vector of the exterior product of the local, 
instantaneous gravity vector -f and E3,. El' completes the orthonormal base. 
The orthonormal horizontal triad E* is based on the normalized local, 
instantaneous gravity vector E3* at the topocenter. The base vector E2* is 
the normalized vector of the exterior product of the local instantaneous 
rotation (vorticity) vector � and the local instantaneous gravity vector -f. 
El* completes the orthonormal base. The "carrousel" triad F* is related to 
the horizontal triad E* by F* = R3(L)E*, where L is the horizontal orientation 
unknown such that Fl* is in the zero direction of the horizontal circle of 
the theodolite. To summarize, the frames are related as shown in the diagram 

E* F* 

� (A,B) 

E' 

where RE(A,B) = R2(7 - B)R3(A), and A the south azimuth, B the horizon distance, 
T the horizontal direction. 

Now we can compute the positional angle 

cos If 
x 

( 12 13) E3, , E3, • 1(13) 
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From the diagram we read 

so that 

E' �<A,B)E* �<A,B)R3
T
<l:)F* �(T,B)F* 

E3, = cos T cos B F1* + s in T cos B F2* + sin B F3* 

{ <X2* - X1*) (X3* -.X1*) + (Y2* - Y1*) (Y3* - Y1*) 

+ (Z2* - Zl*) (Z3* - Zl*) } 

1 (14) 

1 (15) 

1 (16) 

Here, the positional angle is represented by horizontal directions and horizon 
distances at the three network points and is independent of the origin, 
orientation, and scale of the reference systems. 

Next, the network is observed by a camera through right ascension and 
declination. Related reference frames are E', F', and E· which are defined as 
follows: 

The orthonormal equatorial triad E· is based on the normalized local instan
taneous rotation (vorticity) vector E3. at the topocenter. The base vector E2 . 
is the normalized vector of the exterior product of the instantaneous ecliptic 
normal vector and the local instantaneous rotation (vorticity) vector. El. 
completes the orthonormal base. The "carrousel" triad F' is related to the 
observational triad E' by F' = R3(X) E' , where X is the observational orientation 
unknown. To summarize, the frames are related as shown in the diagram 
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E' 

E' F' 

1T where �(a,o) = R2(Z - 0) R3(a), and a the right ascension, 0 the declination. 

From the diagram we see 

so that 

F' = �(a,c)E' 

E3• =cos a cos 15 E1• + sin Q cos 0 E2, + sin 15 E3, 

{<X2' - �,)(X3' - �.) + (Y2' - Y1·)(Y3, - y1,) 

+ (Z2' - Z1,)(Z3' - Zl')} 

1 (17) 

1(18) 

1(19) 
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(where 0ij ' Uij represent differences in 0, U between points i and j)  

holds because E3 , = F3 , by definition. 

The positional angle above is represented by differences in right ascension 
and declination at the three network points and is independent of the origin, 
orientation, and scale of the reference systems. 

EXAMPLE 1.2 (gravity space) 

Let us introduce a triangle in the gravity space constructed from gravity 
vectors rl, r2' r3· 

The network is observed by an astronomic instrument and a gravimeter. Related 
reference frames are E*, E', and F' , defined as follows 

The frames E* and E' have been introduced in the first example. The "carrou�el" 
triad F' is related to the equatorial triad E' by F' = R3 (8gr) E', where 8gr is the equatorial orientation angle, (also called Greenwich sidereal time), such 
that Fl' is in the Greenwich direction, the projection of the local instantaneous 
gravity vector at Greenwich onto the equatorial plane. The frames are related in 
the following manner: 

E· 

E* 

R3 (8 ) gr F· 
.-------------� .. 

where RE(8,¢) = R2 (� - ¢)R3(8), and A astronomic longitude, ¢ astronomic 
latitude, 8 sidereal time angle. 

We can again compute the positional angle 

cos 1 (20) 



From the diagram, 

E * R
T
3(6 ) F' gr 

so that 

r = - II r II E3* 

cos 'l'r 

{[llr211 cos AZ cos �z - IIr111 cos1A cos �11 [llr311 cos ft.3 cos �3 

- IIr111 cos Al cos �1] + rllrzi! sin AZ cos �2 - IIr111 sin '\ cos �11 

[lIr)1 sinA3cos�3- l I r1 1 1  sinA1 cos�1] + rllrzll sin�2 

- II r 111 sin � 1] rI I r 311 sin � 3 - II rIll sin � 1] } . 

11 

1 (21) 

1(22) 

1 (23) 

1(24) 

Thus, the positional angle is represented by the magnitudes of the gravity 
vectors and astronomic longitude and latitude at three network points, and is 
independent of the origin, orientation, and scale of the reference systems. 

EXAMPLE 1. 3 (vorticity space) 

Let us introduce a triangle in the rotation space constructed from rotation 
(vorticity) vectors nl, n2, n3• 

The network is observed with respect to a frame f' uniformly rotating with 
rotational speed w. F', defined in the second example, and f' are related by 
F' = Rc(y,S,a) f', where RC(y,S,a) = Rl(a) R2(S) R3(Y) are rotation matrices, 
and a,S,y Cardan angles (Grafarend et al., 1979: p, 208). 
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The positional angle 

1(25) 

can now be computed, taking into account 

F3• = (sin a sin y + cos a sin 8 cos y) fl' 1 (26) 
- (sin a cos y + cos a sin 8 cos y) f2• 

+ cos a cos 8 f3• 

1(27) 

cos 'l' = I In2-nll 1-1 I In3-nll 1-1 1(28) w 

1[lln211 (sin a2 sin y 2 + cos el2 sin 82 cos Y 2) 

- IInlll (sin ell sin Yl + cos ell sin 131 cos Yl)J 
[lIn311 (sin el3 sin Y3 + cos el3 sin 133 cos Y 3) 

- IInlll (sin ell sin Yl + cos ell sin 131 cos Yl)J 
+[lln211 (sin el2 cos Y 2 - cos el2 sin 132 cos Y2) 
- IInlll (sin ell cos Yl - cos ell sin 131 cos yl)J 

[!!n3!! (sin el3 cos Y 3 - cos el3 sin 133 cos Y 3) 
- IInl!! (sin ell cos Yl - cos ell sin 131 cos Yl)l 
+[lln211 cos el2 cos 132 - II nlll cos ell cos 1311 

[II n311 cos el3 cos 13 -3 IInl!! cos ell cos 131] I 
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is represented as a function of the magnitude of the rotation (vorticity) vectors and the three Cardan angles at three network points and is independent of the origin, orientatio� and scale of the reference systems. 
2. THE BRUNS TRANSFORMATION 

Operational geodesy uses observables as input data and coordinates of the position vector as output data. This input-output relation is called the Bruns transformation, originally presented in its linear form by Bruns (1878) when referring to the horizontal frame. The Bruns transformation classically yields the height anomaly from the disturbing potential divided by normal gravity. Thus it transforms the "observable" disturbing potential into the vertical 
coordinate called "height." Now, we will present a three-dimensional generalization of the Bruns transformation which can be used in both terrestrial and satellite geodesy. 

The idea of the Bruns transformation is the following: Let a vector field 
V be observed, for instance,at a point P on the Earth's surface. Decompose the vector field into a normal part, whose structure is known ( which approximates the real vector field),and into a disturbing part: 

2 (1) 

The normal part vp at P can be linearized by a Taylor series with origin at a point p of the telluroid: 

2 (2) 

where 02 indicates second-and higher-order terms. If we know the approximate position vector 15, we can determine the "displacement vector" P-E from 

v p 2 (3) 

Figure 4 (p.7l) illustrates the vector field in geometric space. Let us call the 
two-point functions, Vp - vp = �v and P-E = 6x, anomalies of the vector field and the position vector, respectively, so that 

2 (4) 
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We can choose �v 

where 

a which we refer to as the isoparametric mapping of oVp � �� 

B 

BOv, 0'1 

-1 C 

2 (5) 

2 (6) 

the Brun's matrix, which is the inverse of the gradient of the vector field at 
point p. Here we have assumed that grad vP is a regular matrix excluding rank 
deficiencies with respect to inj ectivity. In practice, singularities appear 
and have to be treated separately. 

Thus far the Bruns transformation 2 (5) of vector field disturbances into 
position vector anomalies is coordinate-free. Its form with respect to geodetic 
reference frames is the following: 

�Yi. " B"o'1 2 (7) 

�"'6.* B*o'1 2 (8) 

�£S.
0 BOov 2 (9) 

B* �(A,¢) B" 2 (10) 

2 (11) 

��" = [�x", �y", �z·]T displays the coordinates of the "displacement vector" in 
the Earth-fixed equatorial triad f·, ��* = [�x*, �y*, �z*]T, and the correspond
ing coordinates in the horizon triad e*, ��o = [�xO, �yO, �zo]T in the "fixed" 
or inertial (ecliptic) triad eO, where �, v are Eulerian angles,as shown in the 
following diagram: 



o e 

e' 

e* 

15 

f' 

f* 

Instead we could represent the "displacement vector" in the "network" frames (written by capital letters). In the theory of mappings the two frames are called Eulerian and Lagrangian; thus we have here the Eulerian description. 
Before we show examples of the thus far abstract Bruns transformation, we first note another remarkable property. 
In many applications, the vector field of observables is "conservative;' i. e. , 

div OV 0, rot ov o 2(12) 

at least insofar as we are outside of the masses. A consequence of the Bruns transfor
mation 2(5) is then 

div 6.� 0, rot 6.e 0; 2(13) 

thus ov and 6.e can be expressed as the gradient of a scalar potential. If we 
introduce 



16 

ov grad ow, 2(14) 

grad ox B grad ow 2(15) 

follows. ox will be called the adjoint potential. might be surprising that the "displacement vector" vector is a "harmonic" function, div 1I2!; = div grad quite "natural. "  

In the first instance, it which leads to the position ox = 0, but the result is 

Another basic assumption we have made is that we know the approximate position vector p, but from where? If we have settled a convention about origin, orientation,-and scale of a geodetic network to, for example, the geocenter, directions to extragalactic objects and a unit length in geometry space, how 
can we find the a.pproximate position vector p in a geodetic reference system? The factor of uncertainty is introduced by the fact that nearly all geodetic observables depend on the gravity field whose coordinates in Hilbert space (e. g., coefficients in a spherical harmonic representation of the gravitational 
field) are unknown. Fortunately, there are geodetic observables that are gravity free, like positional angles and distance ratios. Only because of this can geodesy be made operational: coordinates in Euclidean and Hilbert spaces can be determined. This general statement will be verified in example 2.1. 

EXAMPLE 2.1 (longitude, latitude, potential) 
Let us introduce the isoparametric mapping 

w p 

where A and � are astronomic longitude and latitude, W the scalar gravity potential, A and ¢ geodetic longitude and latitude, and w the scalar normal 
gravity potential (better known in geodesy by the letter U). Longitude and latitude are spherical coordinates in gravity space defined by 

and 

A arc tan r Ir y x 

arc tan y /y y x 

arc tan r I Ir 2 + r 2 
z VJ X Y 

2(16) 

2 (17) 

2 (18) 

2(19) 
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2 (20) 

where (rx' ry' rz)' (Yx' yy' yz) are Cartesian coordinates of the gravity vector 
r, y, respectively, in the "Eulerian" frame f·. With respect to a chosen reference system, (A, <P, W) are "observable," whe�eas (A, cp, w) are "computable," as in the representation of the potential given in the first section. 

A zero-order approximation of the actual gravity potential is 

w 2 (21) 

where gm is the product of the gravitational constant and the mass of the model 
terrestrial body, II�II = " 2 2 2 ' the length of the vector x. Vx + Y + z 

aw/ax 

(and similarly for y and z). 

A arc tan y/x 

and 
W 

are the corresponding zero-order mapping equations. 

x = � cos A cos <P W 

Y - � sin A cos <P - W 

2(22) 

2(23) 

2(24) 

2(25) 

They can be inverted into 

2 (26) 

2(27) 
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z = � sin 1> W 2(28) 

(excluding, of course, ¢ = ± n/2). If we know (A, 1>, W) and (gm) from observed 
quantities, Cartesian coordinates of the approximate position vector can be 
computed. But how can we call the quantities (A, 1>, W, gm) observable? 

Astronomical longitude and latitude are quantities derived from observations 
related to geodetic astronomy. Fundamental catalogs and a variety of reductions 
(precession, nutation, polar motion, aberration, parallax, etc.) are involved. 
The setup of an observational equation in geodetic astronomy is not routine and 
assumes, strictly speaking, approximate a priori information about the position 
of an observer in geometry space. From gravimetric leveling we obtain only 
potential differences. In order to be able to derive absolute potential, the 
reference system should contain sufficient information in its definition. In 
addition, if we introduce length observations and we extend the isoparametric 
mapping to the isometric case in geometry space by 

2 (29) 

for example, by imposing equal length of an observational line between two points 
on the Earth's surface and the corresponding points on the telluroid, we will be 
able to determine a value for gm. More details will be given in section 3. 

The next step is a computation of the Bruns matrix. 

y 

C· 

m· " 

[aA/3X 
- 3¢/3x 

3w/ax 

3/../3y 
3¢/3y 
3w/3y 

aA/3Z] 
3¢/3z 
3w/3z 

2(30) 

2(31) 



- � 2 2 x +y 
xz 

W sin It - gm cos ¢ 

W 
- -- cos It sin ¢ gm 

W2 
- --2 cos It cos ¢ (gm) 

x +22 x +y 
yz 

gmy 
( 2 2+ 2)3/2 x +y z 

+ � cos It gm cos ¢ 

W • • • '" - -- S1n it S1n '" gm 
w2 

- --2 sin It cos cp (gm) 

B" 

A* 

o 

gmz 
( 2 2 2)3/2 x +y +z 

o 

W -- cos ¢ gm 
w2 --2 sin ¢ (gm) 
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-1 
B* C* 

where the dot, asterisk, and circle denote equatorial, horizontal, and ecliptic 
coordinates, respectively. 

A zero-Order approximation of the vector 6�* is 

l:!.x* o 2(32) 

l:!.y* o 2 (33) 

2 (34) 

which corresponds to the original Bruns formula, because within the zero-order 
approximation 

y 

') 
W'-
gm 

Finally , figure 5 (p .  71) illustrates the isoparametric mapping in the 
curvi-linear gravity and Cartesian geometry space. 

EXAMPLE 2.2 (longitude, latitude, gravity) 

Let us introduce the isoparametric mapping 

A , 
P <l>p 

2 (35) 

2(36) 
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where A and � are astronomic longitude and latitude ,  r the length of the gravity 
vector, A and ¢ geodetic longitude and latitude ,  and y the length of the normal 
gravity vector. We refer also to (A, �, r) as the spherical coordinates cf the 
gravity vector. Alternatively , a Cartesian representation of 2(36) is the 
vector identity 

or 

r 
x 

r 
y 

r z 

in an " Eulerian" frame f·. Because 

r r cos A cos � x 

r r sin A cos � 
Y 

r r sin � z 

the spherical and the Cartesian mappings are equivalent (excluding again 
¢ = ± Tf/2). 

Corresponding to the first example ,  astronomical longitude and latitude 

2(37) 

2 (38) 

2 (39) 

2(40) 

2(41) 

2 (42) 

2(43) 

are observed by astronomical instruments , and the length of the gravity vector 
by gravimeters. In addition ,  the scale of gravity space has to be included 
in the reference system. 
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A zero-order approximation of the actual gravity potential is 

'OW/'ox y 

and similarly for y and z. 

A arc tan y/x 

are the global mapping equations. They can be inverted into 

x = 6 ffiffi Vr- cos A cos cjl 

y � sin A cos cjl 

z = vI!f- sin cjl 

2(44) 

2 (45) 

2 (46) 

2 (47) 

2(48) 

2 (49) 

2 (50) 

2(51) 

(excluding ¢ = + TI/2). Compare 2(26) , 2(27) , 2(28) to 2(49) , 2(50) , 2(51) to 
see that only the "radial" component has changed from gm W-l to Igm r -1 

A "Cartesian" proof of 2(49) , 2(50) , 2(51) follows. Starting with 
global mapping equations 



r = Y = _ gm II� 11-3 x x x 

r = Yy = _ gm II� 11-3 
y y 

and 

r = Y _ gm II� 11-3 z . z z 

We write these in the general form: 

or 

A = a 

(x2+/+z2)3/2 

B = a 

(x2+/+z2) 3/2 

Insert 2(57) into 2(55) and 2(56) to derive 

C A=-x z 

C B = - Y z 

-1 x = AC z 

-1 y = BC z 

x 

y 
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2(52) 

2(53) 

2(54) 

2 (55) 

2 (56) 

2 (57) 

2(58) 

2 (59) 

2(60) 

2(61) 
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Writing 2(57) as 

leads to 

x = 

Y = 

z = 

r r -l 
x z z 

r y 
-1 r z z 

-1 C az 

(±) V;; r (r 2 + r 2 + r 2)-3/4 
gm z x y z 

-1 
C az 

-1 
C a 

t'7 cos It cos cp 

= f T sin It cos cp 

l7 sin CP 

A first-order approximation of the actual gravity potential is 

where w is the length of the rotation (vorticity ) vector. 

dW/'dx = y x 

2 (62) 

2(63) 

2(64) 

2(65) 

2(66) 

2(67) 

2(68) 

2(69) 

2(70) 



Equations 2(70) , 2(71) , 2(72) can be written in the general form: 

A = I- 2 2 
a 

2 3/2 + � L<x +y +z ) J x 

B = r= 2 2 
a 

2 3/2 + J y 
L<x +y +z ) J 

or 

a 
C = z 

(
2 2 2

)
3/2 x +y +z 

Insert 2(75) into 2(73) and 2(74) to obtain 

C 
A = (- + b )  x z 

B (� + b) Y z 

x = Az (B + bz) -l 

y = Bz (C + bz) -l 

which , together with 2(57), is written as 

25 

2(71) 

2 (72) 

2 (73) 

2 (74) 

2 (75) 

2 (76) 

2 (77) 

2(78) 

2 (79) 
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leads to 

2 2 2 3 (x + Y + z ) -2 2 2 
C a z 

This is an equation of the tenth order, i.e., of the form 

10 9 z + az + . . . + [3 o 

2(80) 

2(81) 

2(82) 

Equation 2(82) gives a set of solutions for z, then 2(78) for x, and 2(79) for 
y. Thus we have inverted 2(38), 2(39), 2(40) in gravity space into equations 
in geometry space. Of course, the inversion is not single-valued, but the 
solution space can be easily obtained. 

The next setup will be a computation of the Bruns matrix. 

C '  

oy 

x - tll2!;11
2 

+ 2w
2 

xy 

xy i - tll2!;11
2 

+ 2w
2 

xz yz 

to a first-order approximation. 

2(83) 

2(84) 

xz 

yz 2 (85) 
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Because the gravity vector field to the first order is conservative, div oy = 0, 
rot oy = 0 leads via the Bruns transformation to div 6� = 0,  rot 6� = O. Thus 
if oy is taken from the space of spherical harmonics, so is 6�. 

Figure 6 (p. 72) illustrates the isoparametric mapping in the Cartesian gravity 
and geometric space. 

EXAMPLE 2.3 (longitude, latitude, gravity gradient) 

Let us introduce the isoparametric mapping 

P ¢p' W . .  lJ w .. p 
lJ 2 (86) 

where A and � are astronomic longitude and latitude, Wij second-order gradients 
of the actual gravity potential (i,j ranging over x,y,Z), A and ¢ geodetic 
longitude and latitude, and Wij second-order gradients of the normal gravity 
potential in the horizontal trlad. Specific gravity gradients Wxz' Wyz' Wx 
and W6 = Wyy - Wxx are assumed to be measured by a torsion balance, or any �ij 
by a Gradiometer. 

The first problem is to find a representation of model gravity gradients in 
the equatorial triad. Because of the transformation f· � e* = RE (A,¢) f·, 
the first-order gradient tensor (grad y) can be determined by 

(grad '£)* 2 (87) 

For instance , 

wx* z* 3 gm II �11-5 2 (x - z2) cos A sin ¢ cos ¢ 2(88) 

+ 3 gm II �11-5 xz cos A cos 2¢ 

+ 3 gm II �11-5 xy sin A cos ¢ 

+ 3 gm 11�11-5 yz sin A sin ¢ 
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w y*z* = + 3 gm 1 1� 1 1-5 

3 gm II � 1 1-5 

-I- 3 gm 11�1 1-5 

+ 3 gm 1I �1I-5 

w 
x*y* = + 3 gm I I  xll

-5 

- 3 gm 1I� 11-5 

+ 3 gm II � 1I-5 

+ 3 gm I I �1 1-5 

3 gm 1I� 1 1-5 

- 3 gm I I  �1I-5 

2 2 
(x - z ) 

xz sin cp 

xy cos A-

yz c os A-

2 
sin A-x 

2 
sin A-y 

2 sin A-z 

xy cos 2A-

xz sin 2A-

yz cos 2A-

sin A- sin cp cos cp 

c os 2CP 

cos cp 

sin cp 

cos A-
• 2

cp Sl.n 

cos A-

A- 2 
cos cos cp 

sin cp 

sin cp cos cp 

cos cp , 

If we choose the zero-order approximation of the normal gravity potential 

w = + gm II �II -l 

the gr�vity gradients are given by 

Examples of 2(92) are 

w • •  
x x 

w • •  
x y 

- 3 gm I I �11-5 xy 

2(89) 

2 (90) 

2(91) 

2 (92) 

2(93) 

2(94) 

If we are interested in the zero-order approximation 2(91), the isoparametric 
mapping equations 2(86) can be summed up to be 



A = arc tan y/x 

w . . = w.. (x, y, z) 1.J 1.J 

The general solution can be represented by 

Scale is taken from 

II�II 

x = II� II cos A cos 4> 

y 

�V • • 
1.J 

II � II sin A cos 4> 

z = I I � II sin 4> • 

gm 11�11-
3 

f .. ( A,4» 1.J 

VJ�· 1.J 
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2 (95) 

2 (96) 

2 (97) 

2 (98) 

2 (99) 

2 (100) 

2 (101) 

(no summation) 2 (102) 

where fij ( A,�) is a specific expression, an example of which, for i=x and j=z, 
is shown below. Substituting equations 2 (98) to 2 (100) into 2 (88) yields 

2 (103) 

2 . 2  3 2 . 2 } + cos A sin 4> cos 4> cos 24> + S1.n A cos A cos 4> + sin A S1.n 4> cos 4> 

= gm II x 11-
3 

f (A, 4» • - xz 
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Compare 2(26) - 2(28) , 2(49) - 2(51) and 2(98) - 2(103) in order to see that 
only the "radial" component has changed in the following way: 

3

� l' W
ij 

f . .  (A, <jl) 1J 

2 (104) 

2 (105) 

(no summation ) .  2 (106) 

Thus any coordinate of the Cartesian tensor of gravity gradients is as easily 
chosen as another. 

In addition to the isoparametric mapping of 2(86 ) ,  I tried one with only the 
gravity gradients mapped isoparametrically, but the mapping equations turned 
out extremely nonlinear and I have been unable to invert them . 

The next step is the computation of the Bruns matrix. 

v 

[aA. lax 
a<p/ax 
aw . .lax 1J 

Ov 

aA. lay 
a<p/ay 
aw . .  lay 1J 

a"Aldz ] 
a¢ laz 
aw .. /az • 1J 

2 (107) 

2(108) 

The first two rows of the matrix C' were computed within 2(31) ;  in addition 

aw . .  /ax, aw . .  /ay, aw . .  /az 1J 1J 1J 

have to be computed. Using 2(92) we arrive at 

2 (109) 
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aw . .  /ax 2 (110) 
1J -

Finally, figure 7 (p . 72 ) illustrates the isoparametric mapping in the 
generalized gravity and geometric space. 

Let us summarize what the examples tell us. If we refer to the isotropic 
(zero -order) approximation of the normal gravity field 

w 

we can represent zero-order coordinates of telluroid points by 

x = I I�I I cos A cos <ll 

y I I � I I sin A cos <ll 

z = II�II sin <ll 

where scale is taken from a quantity referring to the gravity field, like I I �I I, 
as given by 2(104) ,  2(105) ,  2(10 6 ) .  For a higher order normal gravity field 
the (x, y, z) representation is more complicated as can be inferred from 2(78) , 
2(79) and 2(82) . In addition, the examples emphasize the nearly arbitrary 
choice of the isoparametric mapping p � P. As we will see in the next 
chapter, the isoparametric mapping 

w p 

leads to the Stokes approximation of the geodetic boundary value problem and 
its finite element form. 
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3. THE DUAL SETUP OF GEODETIC OBSERVATIONAL EQUATIONS 

Once we have decided upon the reference system in either the geometry , 
gravity , or vorticity space , we are able to set up geodetic observational 
equations . In general , these depend on coordinates in these spaces . Let us 
assume for a moment we know the approximate coordinates such that we can 
linearize observational equations . The quantities "observed minus computed" 
�P - yp can be represented by the gradients with respect to these coordinates , 
such as 

y - y -P -p 
(grad yp) 6� + oy x - p -p 3(1) 

where oy is the disturbance vector .  There are geodetic observational equations 
which depend on coordinates only o f  the geometry space , but , in general , they 
are a f unction of gravity space coordinates of Hilbert type , e . g . , spherical 
harmonic coef ficients . 

To present the idea of dual setup of geodetic observational equations in a 
simple way , we will start with a priori parameters which describe the normal 
gravity field, e . g . , (gm) . 

If we use the dual Bruns transformation 

6x B oy 

ov C 6x 

3 (2) 

3 (3) 

which expresses coordinate corrections in the geometry space in terms of 
disturbances in the gravity space (with BC = I, det B # 0, det C # 0) to 
replace geometric coordinate corrections by gravimetric coordinate disturbances 
and vice versa , we arrive at the observational equations 

y - y -p -p 

y - y -P -p 

3(4) 

3 (5) 

These depend either on geometric or on gravimetric unknowns . Thus we have two 
alternatives in adjusting a geodetic network , a geometric mode or a gravimetric 
mode , as shown by the following examples . 



EXA}�LE 3.1 (geometry space) 

As shown in example 1.1, geometric positional angles or length ratios are 
independent of a reference system with degrees of freedom for translation, 
rotation, and scale. The linearized observational equations read 

I'lxl 
I'lYl 
I'lzl 

I'lx2 
I'lY2 
I'lz2 

I'lx3 
I'lY3 
I'lz3 

33 

3 (6) 

where the matrices Ali are functions of the coordinates (xl' Yl' zl' x2' Y2' 

z2, x3' Y3' z3) at the points (Pl' P2' P3), and X�12 represents either positional 
angles or length ratios. If horizontal directions and horizon distances have 
been observed, they are correlated observations, in general. ( See formula 1 (16).) 

The vector I'l� of geometric coordinate corrections can now be transformed into 
gravimetric coordinate disturbances by the three-dimensional Bruns formula , 
e.g., 2 (31), 2 (34) or 2 (108). 

(a) Isoparametric mapping of type longitude, latitude, geopotential: 

3 (7 ) 

OA 3 (8) 
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(Grafarend (1978a) : formulas 1(21),  1(22) ). 

x x 
X312 - l:':312 

x 
"'l:':312 

OAl 
o� 1 
O\Jl 
oA2 
0¢2 
oW2 
oA3 
0<1> 3 
oW3 

3 (10) 

Thus, we have found that the observed geometric positional angles or distance 
ratios depend now only on the disturbing potential ow and the coordinates dioW 
of its gradients. Equations 3(6) and 3(10) are dual. 

If we know scale, distance observations can be approached in the same way . 

(b) Isoparametric mapping of type longitude, latitude, gravity: 

oy 

OA 3(8) 
o¢ 3(9) 

(Grafarend (1978b ): formulas (1. 38) ),  

3 (ll) 

3 (12) 



or 

(B' is, of course, a general notation, and not equal to B' in 3(11). ) 

oy . 1 d. OW 1 
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3 (13) 

3(14) 

3(15) 

Thus, we have found that the observed geometric positional angles or distance 
ratios depend now only on the coordinates dioW of the gradient of the disturb
ing potential. If we know scale, distance observations can be approached 
in the same way . 
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(c) Isoparametric mapping of type longitude, latitude, gravity gradient: 

0>.. 3(8) 
ocjJ 3(9) 

ow, , 
1.J 

d ,d, ow 
1. J 

' y x = [A B I A12 B2 I A13 B3J= °-312 11 1 

0>.. 1 
oh 
ow� , 1.J 
0>...., L.. 

3 (16) 

3 (17) 

3 (18) 

Thus, we have found that the observed geometric positional angles or distance 
ratios depend now only on the coordinates dioW and didjOW of the first- and 
second-order gradients of the disturbing potential. 

If we know scale, distance observations can be approached in the same way. 

EXAMPLE 3.2 (gravity space) : 

As we have seen in example 1.2 gravimetric positional angles or length ratios 
are independent of a reference system with degrees of freedom for translation, 
rotation, and scale. The linearized observational equations read 
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3 (19) 

where the matrices A2i are functions of the coordinates (Yx1' Yy1' Yz1
, Yx2' 

Yy2' Yz2' Yx ' Yy , Yz ) at the points (Y1' Y2' Y3) and yr represents 
3 3 3 312 

either positional angles or length ratios in gravity space. If astronomical 

longitude, latitude, and gravity have been observed, they are correlated 

observations, in general. (See formula 1(24).) 

The vector oy of gravimetric coordinate corrections can now be transformed 

into geometric coordinate corrections by the inverse of the three-dimensional 

Bruns formula, e.g., 2(84). 

I1x 1 
I1Y1 
I1z 1 
I1x2 
I1Y2 
I1z2 
I1x3 
I1Y3 
I1z3 

3(20) 

3 (21) 
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Thus , we have found that the observed gravimetric positional angles or length 
ratios depend now only on geometric coordinate corrections. Equations 3(15) 
and 3(Zl) are dual . 

The next step is to assume that we know orientation and scale in gravity 
space. The linear observational equations for astronomical longitude and 
latitude, the length of the gravity vector, and potential differences read 

fl - >- (a>-/ax) f1x + (a>-/ay) f1y + (a>-/az) p P P P 

<I> - ¢ P p 

r - y P P 

(a¢/ax) 

(ay /az ) 

Wz - WI - (w
Z 

- wI) 

+ 

+ 

P 

f1x + (a¢/ay) f1y + (a¢/az) 
P P P 

p f1x + (ay/ay) f1y + 
P 

(ay /az) 
P 

(aw/ax) f1xl 
(aw/ay) f1l Pl PI 

(aw/a z)  f1xZ + (avl/ay) f1/ 
Pz PZ 

OW
Z - oW

l' 

f1z + 0>-

f1z + o¢ 

f1z + oy 

(aw/az) PI 

+ (aw/az) Pz 

(a) Isoparametric mapping of type longitude, latitude, geopotential: 

B" [EJ 
0>- 3(8) 
o¢ 3(9 ) 
oy 3 (lZ ) 

f1z
1 

f1zZ 

3 (ZZ) 

3 (Z3) 

3 (Z4) 

3 (Z5) 

3(Z6) 



6w 

2 ow + P Cl ow --= 
Clp 

where 

p Y -
1/2 

(Grafarend (1978a ) :  formula 1(23)). 

o 
o 
o 

6y -p 
Yp 
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Clw 3 (27) 
Clp 

The observational equation for the length of the gravity vector is weI] known; 
it is the boundary condition for the "harmonic" potential ow. Even better 
known is its zero-order approximation based on 2(21) 

2 Cl - ow + - (o w) r Clr 

(Grafarend (1978a) :  formula 1(26)). 

- 6y 3(28) 

Thus, we have found that the observed length of the gravity vector depends only 
on the disturbing potential ow and the coordinate Clow/Clp or Clow/Clr of its 
gradient vector , where r = I I�I I . 

The dual formulation is obtained if we make use of the inverse three-dimensional 
Bruns transformation 

ow 
3(29) 

Employing the summation convention over i x , y , z ,  
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f - y -p -p 

3 (30) 

3 (31) 

where the vector of geometric coordinate corrections ll� is a "harmonic" 
function as long as we measure in empty space. Again we have found that the 
observed length of the gravity vector depends only on the geometry vector ll� 
and its gradient. Equations 3(27) (or 3(28)) and 3(31) are dual. 

(b) Isoparametric mapping of type longitude , latitude , gravity 

where 

A p 

1>u � 
fp 

Wp - w 
p 

0), 3 (8) 

o<p 3(9) 

oy 3(12) 

- ), ll)' 
P 

- <p 
P 

ll<P 

- y 
p lly 

0 

0 

0 

llw = ow + £. Cl ow 
2 Clp 

3(32) 

3 (33) 



p 

(Grafarend (1978b): formula (1.39)). 

-1/2 
Y 

4 1  

The observational equation for the potential is well known; it serves 
alternatively as the boundary condition for the "harmonic" potential ow. For 
the zero-order approximation 2(21) we find 

r a ow + - - (ow) 
2 ar 3(34) 

Thus, we have found that the absolute potential depends only on the disturbing 
potential ow and the coordinate aow/ap or aow/<lr of its gradient vector where 

r = I I � II 

For the dual formulation we mention only that we have to integrate oy in order 
to arrive at ow. 

(c) Isoparametric mapping of type longitude, latitude, and gravity gradient 

0\ 3 (8) 

o¢ 3(9) 

ow .. 3(17) 1J 

3(35) 
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w -p 

r -p 

1I. p  

<l> p  
w . . p 

1J 

w 
P 

Y p 

>.. b.>" 0 
P 

<P p M 0 

w . .  P b.w . . 0 1J 1J 

(grad w) B '  [EJ + ow p 
3 (36) 

(grad Y )
p 

B '  [EJ + oy 3 (37) 

Thus, we have found that the observed potential and length of the gravity 
vector depend only on the disturbing potential and coordinates of its firs� and 
second-order gradient. 

Another set of geodetic observations depends on the gravity field , e . g . , 
astronomical azimuth A and horizon distance B .  Their observational equations 
are structured according to 

A12 - a12 

+ 

B12 - S 12 

+ 

1 1 (aa12/d x )b.x + 

2 2 (aa 12/ax )b.x 

1 1 (as l/ax )b.x 

2 2 (a s u/ax ) b.x  

+ 

+ 

+ 

1 1 (aa 12 lay )b.y 

2 2 (aa 12/a y )b. y 

1 1 (a S 12 lay )b.y 

2 2 (a s 12/ay )b. y 

+ 

+ 

+ 

+ 

1 1 (aa 12/az )b. z 

2 2 (aa l/a z )b. z 

1 1 (a S 12/a z )b. z 

2 2 (as l/a z  )b.z 

3(38) 
+ oa12 

3 (39 )  

+' o S  
12 

where a ,  S are zero-order approximations of A ,  B and oa . o S  are subj ect to the 
Laplace condition. 

L [��J 

Here, we assumed that the base vectors F '  and f' are parallel in the 
Euclidean sense. Hence, the observational equations will read 

3 (40) 



43 

ll Xl 
llYl [" lJ X12 - Y12 ll Y12 A 
ll zl + L 3 (41 ) Y ll x2 

o¢l 
llY2 
ll z2 

The equations can be formulated in the geometric mode if we transform o A , o¢ 
according to the inverse three-dimensional Bruns formula of types (a) , (b) or 
(c) . In all cases we will obtain 

3 (42 ) 

The dual representation is found to be 

3 ( 4 3 )  

where 

O A I O A I O A I 
o¢l 09 1 c¢l 1 oWl oY l oW o 0 3 (44)  

lJ 
(i) o y o A2 (ii) O y o A2 (iii) o y  0 A2 

0¢2 0¢2 0¢2 
oW2 

2 
oY2 oW o 0 lJ 

if we choose different isoparametric mappings 0 
At this point we introduce the unknowns describing the gravity field of the 

Earth, for instance , the mass density virials 

I , 1 . , 1 .  0 '  Ilo Jo k , 
o l lJ 
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given in the appendix. They appear in the form 

11• Xl. I I x l 1 -
3, I x x ij i j 3(45) 

and must fulfill the Laplace differential equation. Because of this condition , 
the degree of freedom is 2n+1, where n is the order of approximation in a series 
for the gravitational potential, e.g. , for n = 2 only 5 coefficients of the six 

are independent as a result of tr Iij = O .  

The quantities "observed minus computed" YP - lp are represented by 

Ip - lp = (dl/ dX)p�X + (d l/d Y)p�y + (dl/d Z)p�Z 

+ (dy/d I ) 0 1 - 0 P 0 
+ (dl/d l1)p 0 11 + (dl/d I2)p 0 12 + (dl/d I3)p 0 13 
+ (dl/d I11)p 0 111 
+ (dl/d I22)p 0 122 
+ (dl/d I12)p 0 112 
+ (dl/d I13)p 0 113 
+ (dl/d I23)p 0 123 
+ • • •  + ol 

3 (46) 

3 (47) 



By the symbol "p" we understand the or�g�n of the Taylor series , a set of 
approximate coordinates of points in the geometry space and of approximate 
gravity field parameters. How can these be determined? 

To answer this question we present an example. 

Let us introduce the isoparametric mapping 

[6.>" 
M 
6.w 
6.y �] 

applied to a zero-order approximation 

of the gravity field. 

w 

II arc tan Y 
x 

arc tan i;;:;;;;
z
==;;. 

fx
2 

+ i 

w gm 

45 

3(48) 
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are the global mapping equations . The general solution can be represented by 

x = 

y 

z = 

gm 

I I � I I cos A cos <I> 

I I  � I I sin A cos <I> 

I I  �I I  s in <I> 

� 

-
... fiFr

m -
W - l � 

Thus we have derived approximate values for (x , y ,  z )  and gm : 

x = 

y 

z = 

gm 

W cos A cos <I> r 

W sin A cos <I> r 

W s in <I> r 

ACKNOWLEDGMENT 

3 (L.9) 

3(50) 

3(51) 

3(52) 

3 (53) 

3 (54) 

I wish to express my apprec iation. to the Nat ional Geodetic Survey (NGS) staff 
for their warm hospitality . Inspiring discussions were held with John D .  Bossler , 
Bernard Chovitz , and John G .  Gergen of NGS , Hyman O .  Orlin of  the Nat ional 
Academy of Sciences , and last , but not least , Petr Van{tek , Vis iting Senior 
Scientist in Geodesy of  the Nat ional Research Counc il . Their cooperation is 
gratefully acknowledged . 



APPENDIX A.--INVARIANT REPRESENTATION OF I I  x - x ' I I -m 

In terms of Hilbert invariants 

i = I I  � I I 

i ' I I � ' I I  

i" (x, X' ) 

we will set up series for 

Set 

I I � _ � ' I I -m = . -m 1 [ . , 2 . , J 1 + -1- - 2 � i" E1. . 2  1 2 1 

m 

i , 2 . , E: = - - 2 � i" . 2 1 1 

( HE:) 2 = 1 - l :
m 

2 E: + m�rZ) E:2 

m (m+2 ) (m+4) 3 + m (m+2) (m+4) (m+6 ) 4 
3 :  8 E: 4 : 16 E: 

5 - 0 (E: ) 

= L;  
n=o 

(_l )n m (m+2 ) (m+4) • • •  (m+2n-2) E:n 
n :  2n 

4 7  

(Al )  

(A2 ) 

(A3) 

(A4) 

(AS) 

(A6) 
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i" < 1 ;  thus the series are convergent within the sphere determined by 
Und�r this assumption we can represent (A6) by 

00 
I I  �-� ' I I -m = L 

n=o 

I I �I I  < 1 I I � I I . 

(A7) 

where P� (i") are Gegenbauer (ultraspherical) polynomials (Abramowitz and Stegun, 
1964 : p. 7 74 )  

1 

m PI (x) = mx 

m m ? 
Pz (x) = 2 [ (m+Z)x� - 1] 

pm ( ) _ m (m+Z) x [ (m+4)xZ - 3] 
3 x - 6 

P:(x) = n\ {m (m+Z) ... (m+Zn-Z)xn 

n (n-l) m (m+Z) ... (m+Zn-4)xn-Z 
Z 

(A8) 

(A9) 

(AlO) 

(All) 

(AlZ) 
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(Al3) 

+ 
n (n-1) (n-2) (n-3) m(rn+2) • • •  (rn+2n-6)xn-4 

2 · 4 

+ (_1)£ n (n-1) · · · (n-2£+1) m (rn+2) • • •  (rn+2 (n-£ -1)] x
n-2£ } , 

2 · 4 · ·  · 2£ 

o 1 . . .  < .!!. " - 2 

Despite the identical notation, these should not be confused with associated 
Legendre polynomials . 
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APPENDIX B . --CARTESIAN REPRESENTATION OF THE GRAVITATIONAL POTENTIAL 

In the appendices B-E ,  we char.ge to index notation (xl , x2 ' x3 ) in place of 
(x , y ,  z)  and utilize the summat ion convention . 

Let 

(Bl) 

be the Newtonian representation of the gravitational potential . In terms of 
Hilbert invariants 

holds if 
I I � ' I I  
I I  � I I 

represented by 

i I I  ?El l  

i ' I I � ' I I  

i" (x'A' ) 

I I � I I I I � ' I I  

i , n i-n-l P (i") n 

(B2) 

(B3) 

( B4)  

(B5)  

< 1. Under this assumption the gravitational potential can be 

-f g i-n-l fdx' i , n Pn ( ill ) p(?E' )  (B6) 
n=o 

where Pn are the standard Legendre polynomials . 



In cart es ian coord inates the Hilbert invariants read 

i I I � I I � 1 1 

rX�X� i '  = I I � '  I I  = 
1 1 

x . x� 
i" 1 1 = 

f x . x .  fx� X� 1 1 1 1 

and the related Legendre polynomials pn ( il l ) 

etc . 

P ( i" ) = I o 

, , I , , 3 x . x .  x . x .  - - x x x x 
P ( i" ) 

1 1 J J 3 p p q q 
2 = "2 -----'� ........ �'---x-:-�-x-:-� '--'''--........... .-.. 

(x . x ! ) (x x ) (x' x' )  1 1 P P q q 

(B6) can be wr it ten 

3 2 2 
+ 35 (x x ) (x' x' ) r r s s 

5 1  

(B7 ) 

(B8) 

(B9)  

(BID) 

(Bll) 

(BI2 ) 

(B13) 

(BI4) 



In cartes ian coord inates the Hilbert invariants read 

i = I I � I I = � 1. 1. 

i '  = I I � '  I I  = rx � x � 1. 1. 

x . x � 
i" 1. 1. 

t' x . x .  fx � X �  1. 1. 1. 1. 

and the related Legendre polynomials P� ( i" )  

etc . 

P ( i" ) = 1 o 

P ( i" ) = x . x .  ' .- (� �) 1 1. 1. 

, x . x � 1 x ' x ' 3 x . x .  - - x x 
P ( i" ) 

1. 1. J J 3 p p q q = -
2 2 �� x' x '  Q, Q, 

x . x � 
P ( i" ) 

5 1. 1. 
3 

= 
"2 .r::-::-, Xj Xj t' xkxk 

(x . x ! ) (x x ) (x ' x ' ) 1. 1. p P q q 

(B6) can be writ ten 

3 2 2 + --35 (x x ) (x ' x' ) r r s s 

5 1  

(B7 ) 

(B8 ) 

(B9) 

(BIO) 

(Bll) 

(B12) 

(B13) 

(B14) 
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where 

00 
U (x) = L un 

n=o 

U _ _ --lg=ffi::...-. = _ _----<g:2.--_ 
o 1/2  10 .rx:x-: (x . x .  ) , --i --i � � 

gx . 
ul = - --��-..,./- f dffi' X � :; 

3 2 � (x . x .  ) 

U3 - -

+ 

] ] 

5g 

2 (xQ, xQ, ) 

3g 
2 (xQ, xQ, ) 

7 /2 

3 /2 

x . x . � fdm' x � x � xk � ] � ] 

x . cS · k � ] 

dm' x � x � � � 

(BI5)  

(BI6)  

(BI 7 )  

(BIB) 

(BI9) 



and 

etc . 

I o f dm m 

I . f dm X . � � 

I . .  �J 

I . . 1. 0 �.1 l\.N 

5 3  

(B20)  

(B2l)  

(B22 )  

(B23)  

(B24 ) 

(B25)  

In summar iz ing , we can represent the gravitat ional potential in Cartes ian 
coordinates by 

u (X) = - gm _ � __ 1_' 3_._.-.:.. • ....o.(...,.2n_-_l....:.)..,......,_ 

�� � , (X . X . )  ( 2n+l) / 2 gXi
l 

,
Xj Xj n=l n . J J 

X .  • • •  x .  
�2 �n 

(B26) 
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where 

+ n (n-1) (n-2 )  (n-3 )  ( ) 2 
2 . 4 . ( 2n-1 ) ( 2n-3) 

X . X . • • • X . 0 i i 
0 i i � Xk 11 12 1n_4 n-3 n-2 n-1 n K 

£ n (n-1 )  • • •  (n-2£+1) - • • • + (-1 )  -2-. 4-:-.-.-.�2:':"£ ..;.:(2::.....n..;::::.-..!:-1�) 7'(2:-:n:":':_'-::-3�) -=--• •  ";::::'.�(�2n---2-£-+--'--1 )  

£ = O , 1 ,  • • •  ,� � .  

(B27 ) 
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APPENDIX C . --CARTESIAN REPRESENTATION OF FIRST- ORDER GRADIENTS OF THE 
GRAVITATIONAL POTENTIAL 

Let 

( Cl )  

b e  the Newtonian represent ation of  the f ir st_order gradients o f  the grav ita
t ional potent ial . In terms of Hilber t invar iants 

I I  x ' I I  
hold s if ---

I I  xi i  

i I I � I I 

i ' 

i" = _--=(x=.,..'-"x ..... '-<.) __ 
I I  � I I I I � '  I I  

00 
I I  x - � ' 1 1 -3 = L 

n=o 

< 1 . Under this assump tion the f ir st-order gradients of  the 

gravitat ional po tent ial can be represented by 

00 
d U/ d xi = + L 

n=o 
i-n-3 f dx ' i , n p3 ( i" ) (x . -x . ' ) p (x ' ) g n 1 l 

where P� are Gegenbauer polynomials ( see (A8 ) - (AI 3 ) ) 

(C2 ) 

(C3 )  

(C4)  

( CS) 

(C6)  
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p3 
0 (x)  

p3 
1 

(x) 

p3 
2 (x)  

p3 
3 

(x) 

p3 
4 

(x)  

1 = 3x 

3 2 = -( Sx -1)  2 

S 2 = -:::x ( 7x - 3 )  2 

IS 4 2 = --(2lx -14x +1) 
8 

P� (X) , :: � . 5 . . . ( 3+2n-2 ) X
n 

n (n-l ) 3 . S • • •  ( 3+2n-4 ) x
n-2 

2 

+ n (n-l ) (n-2 ) (n- 3 )  3 . S • • .  ( 3+2n-6 ) xn-4 
2 · 4  

+ (-1 ) £ n (n-l )  • . • (n-2£+1 ) 
3 . s  . • •  ( 2n-2£+1 ) X

n-2� 
2 · 4 • • •  2£ J 

n 
0 , 1 ,  • . .  < 2"  • 

(cl)  

( C8 )  

I f  we refer to Equations (BlS ) to (B27 ) as the Cartesian representat ion o f  
the gravitational potential , w e  will arrive at  



or , in general , 

00 

-�  n=1 

00 

where 

1 · 3  • • •  ( 2n-l )n  
n !  g I I  x l l - ( 2n+l )  I .  . . 

111 . . .  In_1 

5 7  

(C9) 

(CI0) 

(Cll) 

(CI2) 

(Cl4) 
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APPENDIX D . --CARTESIAN REPRESENTATION OF SECOND-ORDER GRADIENTS OF THE 
GRAVITATIONAL POTENTIAL 

We ref er to equat ions (C9 ) to (C14 ) as the Car tesian representat ion of the 
f irst-order gradients of the gravitational potent ial . Here we will c ompute 
second-order gradient s .  

2 a u / a x . a x .  0 1 J 

2 a ul /a x . a x . 1 J 

2 a u,) /a x . a x .  � 1 J 

2 a u/ a x . a x .  1 J 

= - 3g 1 1 � 1 1 -5 I 0 
1 I I  � 1 1 2 0 

ij] [x . x .  
3 1 J 

= + 3g I I  � 1 1 -5 (xi I . 
+ 

x .  1 . )  

= 

= 

J J 1 

_ 15g I I  � 1 1 -7 � Ik [xiXj 
1 I I  � 1 1 2 0 

ij] 5 

3g 1 1 � 1 1 -5 
1 . .  1J 

- l5g I I  � 1 1 -7 xk (x . J 

+ 105 -2- g 1 1 � 1 1 -9 xkxQ, 

_ 15 g I I  � 1 1 -7 � Iikj 

+ 105 -2- g 1 1 � 1 1 -9 �xQ, 

1 . k + x .  1 . k) 1 1 J 

IkQ, 
1 [x . x .  - 7  1 J 

(x . I
j kQ, + x . 1 J 

I I  � 1 1 2 0 
ij] 

IikQ, ) 

(Dl) 

(D2 ) 

(D3 )  

(D4 )  



or, in general, 

2 a u/a x .  a x .  
1 J 

(J() - L 
n=l 

1 · 3 . . •  (2n-1 ) (n-1 ) n 
n !  g 

+! 1 · 3 • . •  (��-l) (2n+1) n g I I  � I I - (2n+3) 
n=l 

(J() 
+
L 1 . 3 • • .  (2n-1;�2n+1) (2n+3) g 1 1 � 1 1 - (2n+S ) 

n=l 

. (x . . . .  x . I . . ) (x .  x .  - 2 
1
+3 I I � 1 1

2 0 . . ) 
11 1n 11 · · · 1n_1 1 J n 1J 

5 9  

(DS) 

(D6) 
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where I I  � I I = �xk � .  It is a "ni ce" exerc ise to prove 

tr (a 2u l a x . a x . ) o 1 J 

o .  



APPENDIX E . --CARTESIAN REPRESENTATION OF THE EUCLIDEAN NORM OF FIRST-ORDER 
GRADIENTS OF THE GRAVITY POTENTIAL 

6 1  

Let w = u - �2 (x1
2 + x 2 ) be the scalar part o f  the gravity potential such 

that y2 = ( dW/ dxi) (dW/ dxiJ is the square of the Euclidean norm of its 
f irst-order gradients .  We ref er to (C14 ) as the Cartesian representation of 
the gravitational potential . The formula 

dW -- = dX . 1 
+ g I I  � 1 1 -3 x .  I 1 0 

00 
_ � 1 ·  3 . .  ��2n-l )n g I I  � I I - (2n+l) 
n=l 

00 
+� 1 . 3 . • .  (2:"!1 ) (2n+l) g 1 1 � 1 1 - ( 2n+3) 
n=l 

2 - w x 0 • a a l  

(where Greek indices range over 1 ,  2 only) 

contains four terms and we designate it as a + b + c + d .  The four-term 
scheme leads to 

+ 2ab + 2ac + 2ad + 2bc + 2bd + 2cd . 

Explicitly , it has the form 

(El ) 
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00 
+ � 
n=l 

00 
� 1 · 3 . . . (2n-l )n 1 · 3 • . •  ( 2m-l)m g2 � n !  m! m=1 

1
3

, . ) J 1 · . . Jm-1 

x . . . .  x .  x . . . .  x . 
11 In_l J 1 Jm-1 

+ g2 � � 1 · 3 . . .  (2n-l ) (2n+l) 1 · 3 • • .  (2m-l) (2m+l) 
� � n !  m! 
n=1 m=1 

+ w4 ( x x ) a a 

2 00 
- 2g � 1 . 3 • • ��2n-l )n 1 1 � 1 1 - ( 2n+4 ) 

x . . • •  x .  I 
n=1 11 In_l 0 

00 

(E3 )  

I I . . + 2g2 � 1 . 3 • • •  (2:"!1 ) (2n+l) 1 1 � 1 1 - (2n+4 ) 
n=1 

x . . . .  x .  0 11 . • •  1n 11 In 



or 

- 2g w2 I I � I 1 -3 (x x ) I a a 0 

()() ()() 
2 - 2g � �  1 . 3  • . •  (2n-l ) n 1 · 3  • • .  (2m-I) (2m+l) 

n=l m=l n !  

. I I  � 1 1 - (2n+l) I I  � 1 1 - (2m+3) 

+ 2w2g ± 1 . 3 • •  ��2n-l )n 1 1 � 1 1 - ( 2n+1 ) 
n= l • 

m! 

6 3  

_ 2w2g � 1 . 3 • • • (2n�1 ) (2n+1) 1 I � 1 I - (2n+3) (xa xa
) x . . . .  x . I .  . �

1 n . 11 1n 11 · · · 1n 

+ g2 I I x l 1 -
6 I .  I . - 1 1 

+ 3g2 I I x l 1 -
8 x . x . I .  I . - 1 J 1 J 

x x 
i j 

I 
ki 

I 
kj 

(1::4 ) 
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+ IS 1 1 !S 1 1 -1O 

+ 22S I l x l l -
12 

4 -

? 
I I  !S 1 1 -

6 + 4g� 

- 6g 2 I I !S I I
-8 

+ 9i I I  !S 1 1 -8 

+ w 4 (x x ) a (). 

- 2gw 2 I I �" -
3 

x .  x .  xk Ii Ij k 1 J 

x . x .  Xk XQ, I . .  1 J 1J 

x .  I I .  1 0 1 

x .  x .  I .  I . 1 J 1 J 

x .  x .  I I . .  1 J 0 1J 

(x x ) I a a 0 

+ 2gw 2 1 1 !S 1 1 -3 Xi I .  1 

+ 6gw 2 " � , , -S I .  x .  X 1 a 1a 

- 6gw 2 I I !S I I -S (x x ) I .  x . 1 a a 1 

Ik£ 

- ISgw 2 I I  !S 1 1 -7 (x x ) I . . x .  X .  

+ 0 ( 1 .  ' k) 1J 

up to third-order terms . 

1 J a a 1J 
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Figure 3 . --Tr iangular network in a 
vector space . 
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