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SOLVABILITY ANALYSIS OF GEODETIC NETWORKS
USING LOGICAL GEOMETRY

Richard A. Snay

National Geodetic Survey
National Ocean Survey, NOAA

Rockville, MD 28052

ABSTRACT. A complete solvability analysis of leveling
networks can be efficiently performed on the computer
without recourse to real number arithmetic. Attempts
to generalize this statement to include horizontal net-
works have been unsuccessful. With leveling networks
the solvability analysis relies on a mechanism of
identifying solvable subnetworks of a solvable network.
A horizontal network can be solvable and yet have no
nontrivial solvable subnetworks.

INTRODUCTION

In the least-squares adjustment of a geodetic network, the question arises as
to whether the observations and constraints of the network are sufficient to
render the normal equations solvable. For certain small networks the question
of solvability is probably best answered by a combined visual-mental process
that involves the inspection of a graphical display of the network. For net-
works with complicated geometry or thousands of stations, this visual-mental
process ranges from inefficient to impossible. Thus, an automated solution
to the process is sought. One approach to automation is to use any of several
different numerical techniques for determining the rank of the normal equa-
tions matrix or, equivalently, the rank of the design matrix. An alternate
approach is to automate a logical process which, as with the visual-mental
process above, is based solely on the geometry of the network. The second
approach appears simple and pleasing in concept. However, no algorithm based
solely on logical geometry has been found which can unerringly distinguish
between the solvable and unsolvable horizontal networks. Such is not the case
with the class of leveling networks. An efficient, universally applicable
algorithm exists. 1In the case of leveling networks, the infinite variety of
geometries generated by the various arrangements of the loops or circuits can
be reduced to a finite number of repeated situations. In the horizontal case
a reduction from the infinite to the finite has yet to be found, if indeed

such a reduction exists. Without this reduction any algorithm based on



logical geometry must necessarily involve an infinite number of logical tests
and, hence, require an infinite amount of computer time. In this paper it is
demonstrated why the technique that reduces the infinite variety of leveling

networks to a finite set fails when applied in the horizontal case.

DEFINITIONS

A network as used here refers to a set of unknown parameters, such as the
coordinates of given stations, together with a set of observations and con-
straints that establish mathematical relationships among the unknown param-
eters. Specifically, for a leveling network, each unknown parameter is the
height coordinate of a station and each observation or constraint is either
the numerical value for a station's height or the height difference between
two stations. A horizontal network is a network whose unknown parameters
consist of coordinates of given stations referred to a 2-dimensional datum
surface, usually a plane, a spherxe, or an ellipsoid, together with so-called
orientation unknowns. The observations and constraints are either numerical
values for the station coordinates or the distance, direction, or azimuth
between two stations. An azimuth is the anqular displacement of a line from
an adopted reference orientation associated with the datum surface. A direc-
tion is the angular displacement of a line from an alternative orientation.
Hence, for each set of directions that refers to a common reference orienta-
tion, there is an orientation unknown to account for the difference between

this orientation and the adopted reference orientation of the datum surface.

From the viewpoint of network geometry, there is no essential difference be-
tween an observation and a constraint. Hence, the word observation is used
subsequently as an all inclusive term. With both leveling and horizontal
networks, observations other than those previously identified are conceivable.

However, such complications are not considered here.

The term network solvability needs to be precisely defined. Optimally, the
definition should correspond with the existence of a least-squares solution
for the network. However, it is more convenient to define a solvable network
as one for which there exists a set of initial approximations to the unknown

parameters such that the normal eguations' matrix is of full rank or,



equivalently, the rank of the design matrix equals the number of unknown
parameters. According to this definition the solvability of a network is
independent of the values assumed by the observations. For nonlinear least-
squares models, such as is the case for horizontal networks, the existence
of a least-squares solution is dependent on the observational values. The
following example illustrates the discrepancies that can result between the

two concepts because of this.

Let A, B, and C denote three horizontal stations in a plane such that the
coordinates of stations A and B are observed together with the azimuths from
A to C and from B to C. Three basic geometric situations can occur depending
on the values assigned to the two azimuths (see fig. 1l). 1In the first case
{(fig. la) the azimuth lines intersect at a single point. Here the least-
squares solution exists. 1In the second case (fig. 1b) the azimuth lines do
not intersect. Here the least-squares solution does not exist because there
are no positions for stations A, B, and C at which the weighted sum of
squares of the residuals attains a minimum. (This excludes positions for
which stations are collocated.) In the third case (fig. lc) the azimuth
lines intersect at infinitely many points. Here, since the least-squares
condition is satisfied for infinitely many positions of C, the least-squares
solution is not considered to exist. In all three cases there are initial
positions for which the rank of the design matrix equals six. Hence, each of

these networks is solvable with respect to the definition.

In the second case of the example, if it is assumed that the two azimuths
were physically observed, then one of the values assigned to these azimuths
must have been in error. Without this error the least-squares solution would
have existed. This example illustrates that algorithms to test for solva-
bility by the definition are incapable of detecting these errors in the data.
The third case illustrates that such algorithms are also incapable of de-
tecting networks of critical configuration. Critical configurations in
satellite networks have been studied by Rinner (1966}, Blaha (1971), and
Tsimis (1972 and 1973) . No similar study for horizontal networks is known to
the author. Critical configurations do not occur with leveling networks

since they belong to the class of linear least-squares models.
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Figure 1l.--Network geometry depends on observational values.

The term ill-conditioning refers to another problem related to solvability.
For an ill-conditioned system the least-squares solution exists but is com-
putationally difficult to obtain. Figure 1d illustrates such a situation.
Geometrically, the network of figure 1d is equivalent to the first case in
that the azimuth lines intersect at a unique point. However, the two lines
are so nearly parallel that the solution might not be obtainable by a stand-
ard solution algorithm as it is coded within a computer. By definition this
network is solvable. Again the discrepancy results because solvability is

defined to be independent of observational values.

CRITERIA FOR THE EVALUATION OF A SOLVABILITY CHECK

Because (1) numerical techniques for determining the rank of a matrix, such
as Gram-Schmidt orthogonalization, involve essentially as much work as is
required in obtaining the least-squares solution, and (2) the solution is
actually what is desired, the solution might be attempted without a solva-
bility check. In this way if the network is solvable, then there is no

wasted effort; and if the network is not solvable, then the mathematical



algorithm used to obtain the solution usually ascertains this. There are two

shortcomings with this approach to the problem of solvability.

For the purpose of illustration, assume that the least-squares solution is
attempted using a direct or elimination technique, such as Gauss-Doolittle,
for reducing the matrix of normal equations. If the network is not solvable,
then the solution algorithm will detect this when an element on the main
diagonal of the matrix reduces to zero. Herein lies the first shortcoming,
namely, the inability of the computer to recognize zero. As people and com-
puters can only manipulate a finite number of significant figures, it is prob-~
able that the particular main diagonal element of the unsolvable network will
not reduce exactly to zero. To compensate for this a small positive number r
can be chosen as a tolerance, in which case the number x is said to equal =zero
whenever lxl < r. However, with any given tolerance, it is possible either to
call a nonzero number zero or to have a number greater than r which is theo-
retically zero. 1In the first case a solvable network is called unsolvable.

In the second case an unsolvable network is called solvable.

The second shortcoming of the method occurs when the network has been deter-
mined to be unsolvable and it becomes desirable to know which combinations of
observations (and/or constraints) can be added into the network to insure
solvability. While it is true that the location of the diagonal element
which becomes zero during the reduction contains some information of this
nature, more information about the geometry of the network and the observa-

tions 1is required for this type of analysis.

In view of the preceding, the following criteria can be used to evaluate a
proposed solvability checking procedure:
1. The procedure should require significantly less resources than the
process of obtaining the least-squares solution.
2. The procedure should be foolproof in distinguishing between solvable
and unsolvable networks. In particular, the procedure should not

depend on the recognition of calculated zeroes.



3. The procedure should provide sufficient information concerning the

geometry of the network for effective analysis of unsolvable networks.

IOGICAL GEOMETRY

A complete solvability check based on logical geometry is said to exist for
a class of networks if there is a finite set of conditions which can be used
to distinguish between solvable and unsolvable networks. Moreover, it is re-
quired that each such condition be testable without the use of real number
arithmetic. To illustrate the concept, consider the class of horizontal net-
works where each member consists of three stations in the plane. Furthermore,
the observations for members of this class include the two coordinates for
one station and an azimuth between two stations. All other observations are
either distances or angles (the clockwise difference between two directions
which refer to a common initial orientation). For networks of this class a
complete solvability check based on logical geometry can be formulated with
three conditions. Specifically, a network in this class is solvable if and
only if the observations include one of the following combinations:

1. +three distances,

2. two distances and one angle, or

3. one distance and two angles.

The distinction between a complete and an incomplete solvability check is of
significance. The difference is based on whether or not the solvability
check 1is infallible in distinguishing between solvable and unsolvable net-
works. An example of an incomplete solvability check for horizontal networks
is the condition that each station of the network be involved in at least two
observations. The incompleteness of this solvability check is demonstrated
by a horizontal network with observations for the two coordinates of one
station and distances between each possible pair of stations. Although each
station has two observations, the network has no orientation control and is
unsolvable. In the absence of a complete solvability check for a class of
networks, the incomplete checks have found some application. The particular
one mentioned above satisfies two of the criteria established in the previous

section: it is computationally efficient since counting is the only numerical



operation involved and it provides usable information about the geometry of

the network.

THE INDUCTION PRINCIPLE

Consider the mathematical statement: if 2"-1 is a prime number for an in-
teger n greater than 1, then 2n—l(2n_l) is the sum of all its proper divisors.
(A proper divisor of a number is a factor of the number other than the number
itself.) For example, if n = 3, then 2n -1 =7 is a prime number. Thus,
2n-l(2n_l) = 28 1is the sum of all its proper divisors or 28 =1 + 2 + 4 + 7 +
14. The mathematical statement actually involves an infinite number of state-
ments, one for each integer greater than one. Hence, its validity cannot be
established by checking the truth of the statement for all values of n up to
100 or for all values up to 100,000,000. To validate such a statement a
technique called mathematical induction is usually appropriate, although it
can often be circumvented. The basic step in using induction is to demon-
strate that the validity of the statement for the case of n is dependent
upon the validity of the statement for the cases of certain numbers less than

n.

In the problem of solvability, one encounters the situation of having an in-
finite number of different possible geometries since a network can have any
positive number of stations. Thus, one approach to the solvability problem
is to apply the induction principle. The crucial step in the application
involves the formulation of the induction hypothesis, i.e., finding the
proper condition which associates the geometry of a network to the geometry

of a network with fewer stations.

THE INDUCTION PRINCIPLE APPLIED TO LEVELING NETWORKS

For leveling networks the induction principle can be applied to develop a
complete solvability check based on logical geometry. The formulation of the

induction hypothesis is based on the validity of theorem 1.



Theorem 1. A leveling network is solvable if and only if it
contains a station with at least one associated observation
such that the network obtained by removing this station and

its associated observation(s) is solvable.

From theorem 1 it follows that every solvable network can be constructed
one station at a time with each intermediate network being solvable. This
leads to a readily testable condition for solvability as stated in theorem 2
below. The statement of theorem 2 makes reference to the correspondence be-
tween the set of leveling networks and the set of undirected graphs. 1In this
correspondence each station or height unknown relates to a vertex of a graph
and each observed height difference relates to an edge of this graph. A com-
ponent of a graph G is a connected subgraph of G which is not contained in
any larger connected subgraph of G. A subgraph H is connected if each pair
of vertexes of H can be linked by a sequence of edges in H. It follows that

each vertex of a graph belongs to one and only one component.

Theorem 2. A leveling network is solvable if and only if each
component of the associated graph contains a vertex which cor-

responds to a station whose height has been observed.

The proofs of theorems 1 and 2 are given in appendix A. The application of
theorem 2 is easily automated. From the cbservations a table of the existing
edges of the graph is constructed and the components are identified. After
this, it is only a matter of checking whether or not each component has at

least one observed height.

INAPPLICABILITY OF INDUCTION PRINCIPLE FOR HORIZONTAL NETWORKS

The induction principle, although successful in developing a complete solva-
bility check for the class of leveling networks, has yet to be applied to the
horizontal case. An effective induction hypothesis has yet to be formulated
that relates the geometry of a horizontal network to the geometry of hori-
zontal networks with fewer stations or fewer observations. In the leveling
case the induction hypothesis is based on the property that a solvable net-

work can be built up one station at a time with each intermediate network



being solvable. Such is not the case with solvable horizontal networks.
There are solvable horizontal networks which cannot be built from a simple
network one station at a time with each intermediate network being solvable.
Moreover, for each positive integer n, there is a solvable network which can-
not be built from a simple network with less than n stations at a time and
each intermediate network being solvable. This statement follows by showing
that for each positive integer k, there is a solvable horizontal network with
more than k stations which does not contain any smaller solvable subnetworks
of more than two stations. To simplify the arguments in this proof it is
convenient to deal with networks with only one type of observation. Thus, a
trilateration network is defined as a horizontal network where the only un-
known parameters are station coordinates and the only observations are dis-
tances between pairs of stations. A trilateration network is said to be
rigid if the normal equations' matrix has rank 2n - 3 where n is the number
of stations. Hence, a rigid trilateration network can become a solvable
horizontal network with the addition of certain combinations of three obser-
vations of position and/or azimuth. For leveling networks the concept of
rigidity applies to networks where the only observations are height differ-
ences. Here a network is rigid if the rank of the matrix is n - 1, where n
is the number of unknown heights parameters. It follows that a leveling net-
work is rigid if and only if the associated graph has only one component.
Examples of yrigid trilateration networks are pictured in figure 2. Figure 3

illustrates some nonrigid trilateration networks.

Let T denote the simplest rigid trilateration network, i.e., two stations
and a distance as pictured in figure 2a. Figures 2b and 2c are examples of
rigid trilateration networks which can be constructed from T by adding one
station at a time with each intermediate network being rigid. Figure 2d
illustrates a rigid trilateration network which cannot be so constructed be-
cause it has no rigid subnetworks of three stations (no triangles). In view
of this, one might ask whether or not there exists some finite variety of
"building blocks" such that every rigid trilateration network can be con-
structed from T by adding one block at a time with each intermediate network
being rigid. This principle is suggested by the network of figure 2e. Un-

fortunately, such is not the case. The variety of building blocks is
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Figure 2.--Rigid trilateration networks.



11

infinite. To prove this it is shown that, for each integer k, there is a rigid
trilateration network with more than k stations which contains no rigid sub-
networks other than T. Thus, an infinite sequence of rigid trilateration net-
works is identified. Figure 4 illustrates the first three members of this

set, the set of "staircase networks" as suggested by their geometry. Specifi-
cally, for each integer n greater than 2, the staircase network N2n consists

of 2n stations and 4n - 3 distance observations. Let d(Pj,Pk) represent the
distance between stations Pj and Pk; then the staircase network N2n for n 2. 3
contains the following observations:

d(Pi,Pi+l) for 1 <i <2n-1
d(Pi,Pi+3) for 1 <i < 2n -3

d(Pl,Pzn).

N
A proof that the network N2n is rigid and contains no rigid subnetwork other
than itself and the simple two station subnetworks is given in appendix B.
Thus, an induction hypothesis based on the combination of rigid networks can-

not be formulated.

A D

Figure 3.--Nonrigid trilateration networks.
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Figure 4.~-The first three staircase networks.

DISCUSSION

The arguments of this paper do not prove that complete solvability check
based on logical geometry does not exist for horizontal networks. They do
demonstrate that the technique applicable for leveling networks cannot be
directly generalized to work in the horizontal case. To handle the infinite
number of geometric possibilities, an alternate induction hypothesis might be
formulated. The induction hypothesis presented and discredited attempted to
extend quasi-solvability, i.e., rigidity, from small networks to larger net-
works using a finite variety of steps. Possibly an induction hypothesis

can be formulated based on extending some other property, or possibly the
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induction principle can be ignored all together. The approach that seems the
most plausible is to translate the problem into the language of graph theory
and/or finite groups and look for a property like connectivity which proved

fruitful in the leveling case.
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APPENDIX A.--PRESENTATION OF THEOREMS RELATED TO LEVELING NETWORKS

The proofs of theorems 1 and 2 are presented here. A tree, as referred to
below, is a connected graph which becomes disconnected upon the removal of any
of its edges. Equivalently, a tree is a connected graph with no loops, e.g.,

the graph of figqure 5. It follows that a tree of n vertexes contains n - 1

edges.

Figure 5.--A tree is a graph with no loops.

Lemma A. Let L be a leveling network of n stations whose
only observations are height differences and let the graph
associated with L be a tree; then the design matrix for L

has rank n - 1.

Proof:

The proof is by induction on the number of stations in L. The lemma is
clearly true if L has one station. Assuming the lemma's validity for the case
of n stations, suppose L has n + 1 stations. Remove a vertex joined by ex-
actly one edge. The resulting network with n stations still has a tree for
the associated graph, and, by induction, its design matrix has rank n - 1.
Augmenting this design matrix with removed unknown and observation results in

a design matrix of rank n.

Lemma B, If L is a solvable leveling network whose associated
graph is connected, then L contains a station whose height is

observed.
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Proof:

Suppose L has n stations; then, since the associated graph of L is connec-
ted, the graph contains a tree of n - 1 edges. By lemma A, the edges of this
tree correspond to n - 1 linearly independent observed height differences.
Given any observed height difference in L, it can be written as a linear com-
bination of the observations corresponding to edges of the tree. In particu-
lar let <u, w> be an edge corresponding to an observed height difference in L;

then, there are vertexes in the graph v_, v ,...,vm such that <v,, v. _> is
i i

1" 2 +1
an edge of the tree for 1 £ i <m1, v. = u, v. =w, and the row in the de-

1 m
sign matrix corresponding to <u,w> is a linear combination of the m-1 rows
corresponding to the edges <vi, Vi+l> (fig. 6). Hence, the observations
corresponding to height differences account for only n~1 linearly independent
rows in the design matrix. Since the design matrix has rank n, there must be

an observed height in L.

Figure 6.--In a graph of a leveling network a loop corresponds to the
existence of a linearly dependent observation.

Theorem 1. For leveling networks the following are equivalent:
a) The network is solvable.
b) The network contains one station with at least one
associated observation such that the network obtained by
removing this station and its associated observation(s)

is solvable.
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Proof:
(a => b): Pick a component of the associated graph. Without loss of gen-
erality, it can be assumed that the station unknowns are ordered such that the

design matrix A can be partitioned as
A =1}A_ A
[ 2]

where Al is the matrix whose columns correspond to the unknown heights of the
stations in the chosen component. Since there are no observations between
different components, no row of A contains nonzero elements in both members
of the partition. Thus, as the rank of A equals the number of stations in

the network, the rank of A, must equal the number of stations in the chosen

1
component, say n. By lemma B, one of the rows in Al must correspond to an
observed height. Since the rank of Al is n, there must be n - 1 other rows

in A. such that these n rows are linearly independent. Let A * be the sub-

1 1
matrix of Al corresponding to these n rows. The matrix Al* contains at most
2n-1 nonzero elements. Hence, there exists a column in Al* which has ex-

actly one nonzero element. Eliminating this column and the row containing
this nonzero element from Al* leaves a matrix of rank n -~ 1. Hence, the
network obtained by removing the corresponding station and its associated

observations is solvable.

(b => a): Let L be a network containing a station with at least one associ-
ated observation such that the network obtained by removing this station and
its associated observations from L has a design matrix A of rank n ~ 1 where
n equals the number of stations in L. Augment A by an additional column for
the removed station and additional rows for the removed observations. Since
only the new observations have nonzero elements in the new column, a design

matrix of rank n is obtained. Hence, L is solvable.

Theorem 2. For leveling networks the following are equivalent.
a) The network is solvable.
b) Each component of the graph associated with the net-
work contains a vertex corresponding to a station

whose height has been observed.



17

Proof:

(a => b): The proof is by induction on the number of stations in the net-
work L. The statement is clearly true if L has only one station. By theorem
1, L contains a station with at least one associated observation such that the
network L* obtained by removing this station and its associated observations
is solvable. By the induction hypothesis each component of the associated
graph of L* contains a vertex which corresponds to an observed height. The
graph corresponding to the network L has no additional components unless the
removed station has only an observed height. In either case, each component

of the graph associated with L has an observed height.

(b => a): The proof is by induction on the number of stations in the net-
work. If the network has only one station, then the statement is clearly
true. Suppose the network has several stations. Choosing one of the com-
ponents, a vertex can be removed from it such that each of the remaining com~
ponents has an observed height. This is clearly possible if the component
has only one vertex. If the component has more than one vertex, a vertex can
be removed because every connected graph contains a tree with at least two
vertexes and the removal of these does not disconnect the tree or the graph.
One of these two vertexes can be removed such that the remainder of the com-
ponent contains an observed height. Hence, the network corresponding to the
graph with the removed vertex is solvable by application of the induction

hypothesis and the original network is solvable by application of theorem 1.
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APPENDIX B.--PRESENTATION OF THEOREMS RELATED TO THE STAIRCASE NETWORK

Here it is demonstrated that for each integer greater than 2 the staircase
network N2n is rigid; but no subnetwork of N2n other than the trivial ones
(two stations with included distance) is rigid. Recall that the staircase
network contains 2n stations denoted Pl' P2, ey P2n and 4n - 3 distance
observations:

da(p,, P for 1 < i < 2n-1

( i’ i+l) -7 -

d(p,, P for 1 < i < 2n-3
( i’ i+3) -7 -

d(Pl, P2n) .

The following preliminary positions are assumed for the unknown coordinates

. < .
(Xk' yk) of station Pk for 1 £ k £ 2n

f
(Eél', E%£> if k is odd
(xk, yk)=< (5_;_2.,5;—2+ 1> if k is even and k # 2n
(n-1, 0) if k = 2n.

Theorem 3. In a plane the staircase network N n is rigid for n > 3.

2

Proof:
In a plane the observation equation fcr an observed distance s between two

stations whose coordinates are (xl, yl) and (x2, y2) is

2 2\%
s +v = ( (xl—xz) + (yl—y2) )2.
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Thus, the linearized observation equation becomes

(8. - &) (g, =€) ( - )
- _ 1 2 1 2 Ny =" (n, - n,)
(s=s.) + v = —=gx. - ——2 4 L2 - o2
0 50 1 5, Xy * 5 dy, 5 dy,
where sy = Gil - 52)2 + (nl - n2)2>1/2 and (El, nl) and (52, n2) are approx-

imations to the adjusted coordinates of the stations. With the observations

in the order

d.(l, 2), d(ll 4)1 d(2l 3)1 d(2l 5)1 ey d(ll i+l)l d(ll i+3)’ A
d(2n-3, 2n-2), d(2n-3, 2n), d(2n-2, 2n-1), d(2n-1, 2n), 4d(l1, 2n)

the design matrix A has the form illustrated in figure 7.

2n

The rigidity of the staircase network is demonstrated by showing that the

design matrix A has rank 4n - 3. The rank of A2n equals the rank of the

2n
matrix B2n where B2n is obtained from A2n with the following steps for
2 2
G = (l/5)l/ and H=1/(n" - 4n + 5)1/2:

1) For 0 < k £ n~-3, replace row 4k+2 of A2n by 1/G times row 4k+2 minus
2 times row 4k+1 plus row 4k+7,

2) For 0 £ k £ n-4, replace row 4k+4 of A2n by 1/G times row 4k+4 minus
2 times row 4k+3 plus row 4k+9,

3) For k=n-3, replace row 4k+4 of A n by 1/G times row 4k+4 minus 2

2
times row 4k+3 minus row 4k+8,
4) For k=n-2, replace row 4k+2 of A

4k+1.

on by 1/H times row 4k+2 minus row

The matrix B2n is illustrated in figure 8.

Consider the vectors ;i for 1 < i £ 4n - 3 formed from the 4n-3 rows of the

matrix B2n' To demonstrate that the rank of B2n is 4n - 3 is equivalent to

showing that if
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PI2N)Y

P(2N=2) P(2N-1)

P(2N-4) P(2N=-3)

P (2N-5)

P(}) p(2) P(3) P(&4) P(5) P(6) P(T)

ROW

G 26*

1e

-l®
-G ~-206¢

¢ Q

oe
26 G

0
-G®

#=2G6

L B0 4

26+

-l
-26%

0
-6

(123
26 Ge

o#
-GG

«=-26

le

-1®

-2G*%

un=-11¢

G 26*

*

s -6

4N=-10¢

Qe

0@
-G®

#-26

4N-9 «

G

26

4N-8 o

1e

-1®
-H®

4N=-T «

*e(N=2)H H

*(N=-2)H

4N-b @

0

Qe

4N-S ©

-1

1

4N-4 @

Qu

4N=3 o]

(1/5)#%0,5
= (l/7(N®#22 = 4N * S5))ea0.5

G =
H

WHERE
AND

Figure 7.--The matrix A2n'



P(2N)

P(2N=2) P(2N=1)

P(2N=3)

P(2N=5) P(2N=Y4)

P(T)

Pl(1) P(2) P(3) Piy) P(5) P(6)

ROW

-1

« 0

-2

=1

-2

0 =1 «x

*

-2

-2

0 =1 x

*

4N=11%
4N-10x

-2

-1

-1

YN=9 x

-2

-1

UN-8 =

4N-T *

1

-1 ® =(N~-2)

N=2

UN=6 »

-1

4YN=S »

UN=4 »

*

0

UN=-3 =-)

21

Figure 8.--The matrix B2n°
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4an-3
b, is a set of real numbers with 2: bi;i = 0.
* i=1
=0 for 1 £ i £ 4n - 3, where 0 denotes the zero vector.

Then b,
i

For 0 £k £n-2, b = 0 because row 4k+1 has the only nonzero element in

- 4k+1
column 4k+2.
For 0 £ k £ n-2, b4k+3= 0 because row 4k+3 has the only nonzero element in
column 4k+3. Also, b4n—4= 0 because row 4n-4 has the only nonzero element in

column 4n-2.

Let C2n be the matrix obtained from B2n by deleting

a) row 4k + 1 and column 4k + 2 for 0 <

A
A

n - 2,

b) row 4k + 3 and column 4k + 3 for 0O <

A
=
A

<n - 2, and

¢) row 4n - 4 and column 4n - 2,

The matrix C is illustrated in figure 9.

sz, if 1<j<2n-3

b if 3J=2n-
4n-3’ if j=2n-2.

4n-3

Then, since 2: bi;i=67 it follows from above that
i=0

aw.= (1)

where ;5 are the rows of the matrix C2n for 1 £ j £ (2n-2).



P(2N)

P(2N=2) P{2N=-1)

P(2N=3)

P(2N=5) P(2N=4%)

P(7)

P(1) P(2) P(3) P(4) P(S) P(6)

ROW

-2

-1

-2

-1

-2

-2

-1

2N=-5 =

-2

-1

2N-4 x

1

xeN+2

-1

N=2

2N=3 »

-1

2N=2 =

23

C2n'

o

Figure 9.--The matrix

&
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Inspecting the columns of Con’ the vector eq. (1) is seen as being

equivalent to the following set of equations.

Column Equation

1 fn-2 T "%

2 a, = —2al

3 aj = -2a2

4 a, = —2a3+2al

k (for 55 k < 2n-4) a, = —2ak_l +2ak_3+ak_4
2n-1 2a2n_4+a2n_5 =0

2n (n=2) 2,3 = 342

If al=0, then it follows from these equations that aj=0 for 1 £ j £ 2n-~2.
This implies bi=0 for 1 < i £ 4n ~ 3 and that the matrix an has rank 4n-3.
But if al # 0, then a contradiction arises in the sense that not all of the
above relationships can hold. Suppose al#O; without loss of generality, it
can be assumed that al=l since E:aj;g = 0 implies 2:(caj);5 = 0 for any

2n-4

k=] Tust satisfy the recursive

constant number c. Hence the sequence {ak}

relations,

a, = 1
a, = -2
a, = 4
a, = -6
ak = —2ak_l+2ak_3+ak_4 for 5 < k < 2n - 4.

T > .
hus, by lemma C stated below, la2n_4| |a2n_5‘

This contradicts the equation 2a + a = 0 from column 2n - 1.
2n-4 2n-5
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Hence, al = 0 and the matrices an and A2n have rank 4n - 3 and the stair-

case network is rigid.

o]
Lemma C. The sequence of real numbers {ak}k—l' defined by the

recursive relation

= -2 + +a £ k>5 (2)
%k A-1t23y_gtay, For KX
and the initial conditions al =1, a2 = =2, a3 = 4, a4 = -6, has ther
> k> 2.
property that ‘akl __lak_ll for >

Proof:

First it is shown that the sequence satisfies the equation,

2
+
<E5£> if k is odd
a, = (3)

S S TES NS vy
\ 2 2 1 ls even .

The proof is by induction on k. The validity of eq. (3) is verified directly

for a., a a and a,. Assume k is an odd integer greater than 4; then, em-

1 2" 737 4
ploying the induction hypothesis to substitute from eq. (3) into (2) yields

e e S B )
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If k is an even integer greater than 4, then substitution of (3) into (2)

yields
_ 2<5>2 +2<_k_—z>2 _ <u)2 - (k)
% ~ 2 2 2 2
k 2 k
which upon simplification becomes a = - <§> + 21

Hence eq. (3) holds for all positive integral values of k.

. . . N .
Consider the inequality Iakl z ak—l‘ (4)
. k 2 kX k 2
1f k is even, then (4) becomes £y + 3 > £y . (5)
2 2 \
+ - k-
If k is odd, then (4) becomes <551> 2.<E§l> + <—El> . (6)

The validity of inequalities (5) and (6) can be verified by straightforward

algebraic manipulation. This completes the proof of the lemma.

Theorem 4. For n 2 3, the staircase network N2n has no rigid
subnetworks other than the entire network and the subnetworks

consisting of just two stations and one observation.

Proof:

It will be shown that every set of k stations in the staircase network N
contains at most k - 4 observations when 2 < k < 2n. The proof is by induc-
tion on n (half the number of stations in N2n). For n=3, the validity of the.
statement for N6 (fig. 4) is verified by inspection, considering all possible
subnetworks which contain 3, 4, or 5 stations. Suppose n>3, A is a subnetwork

of N2n with k stations such that 2<k<2n, and B is the subnetwork of A that is

contained in N_ *. (N2n* is defined as the subnetwork of N

on n containing all

2
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stations except P2 5 and P2n 1 (fig. 10). Let j equal the number of stations
n— -

in B. Three separate cases are considered:

Case 1: j =1, or 2. Here k is 3 or 4 and A contains stations P2n—2 or

P2 1 °F both. The case of k=3 is eliminated since N2n contains no triangle
n—

. . . - p .
involving P2n—2 or P2n—l If k=4, then P2n_2,and on-1 must both belong to A

Inspection of the network reveals that there are no four stations in N2n in-

cluding both P2n—2 and P2n—l and having more than four distance observations

between pairs of them. Thus A has at most 2k-4 observations.

. , _ . * 3 .
Case 2: 2<j<2(n-1). Since N2n is a subnetwork of N2(n—l)' it follows by

the induction hypothesis that B contains 2j-4 or fewer observations. If A=B,
i.e., j=k, then A has at most 2k-4 observations. Now if A is obtained from B

i j i.e. =j+1,
by adding just P2n—2 or P2n—l but not both, i.e., k=3+1, then A has at most

only two more observations than B. Hence, A has 2k-4 or fewer observations.

If A is obtained from B by adding both P2n_2 and P2n—l’

can have as many as five more observations than B (the dashed lines of

i.e., k=3j+2, then A

fig. 10). However, if A does have five more observations than B, then both

stations P2n—5 and P2n are in B, in which case B has 2j-5 or fewer observa-

tions because d4d(P R P2n) is not an observation in N

on-5 n although it is an

2

observation in N Hence, A has at most 2k - 4 observations.

2(n-1)"

Case 3: j = 2(n-1). 1In this case B equals N_ * which has 2j - 4 observa-

2n

tions, one less than N_, A equals B, or A is formed from B by

25 = Na(n-1)"

adding P2n—2 or P2n_1 but not both. If A equals B, then j = k and A has

2k - 4 observations. If A is formed from B by adding P2n—2 or P2n—1’

k =3+ 1 and A has at most 2 more observations than B. Hence, A has 2k - 4

then

observations. This completes the proof of theorem 4.
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Figure 10.--The general staircase network. N2n
corresponds to all lines. N2n* corresponds to
all solid lines. N2(n—l) is equivalent to N2n*
with an additional line between P and P

2n-5 2n’
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