The Trouble with Constrained Adjustments

Charles R. Schwarz

Abstract

 must be extended io toke into necount the effects of the iencertiminties af the fixed control points. The opposite that are wasse thas the free adjustment.

Introduction

Constrained adjustments are guite common in thi processing of survey dala. Evcry time we adjust a new survey into an existing coordjnate system by using existing control points, we are perforsning a corstrained adjustrnent.
The control network is intended to he!p sumveyors place their surveys into some larger coordinate systern, detect bunders in their observations, and sontrol the build-up of the effect of observational erters on the adjusted coordinates. However, these are circurnstances under which control networks become inadequate for their intended purpose. When this happens, surveyoss may have difficulty filling a new survey in to the existing control metwork. Misclosures may be much larger thian expected, and the difference between observed and adjusted values of obsencations may be much larger than can be explained by observational error.

Free and Constrained λ djustnents

1n the majority of least-squares adjustment prablems, the unknown parameters are the coordinates of physical points. When coordinates are used, it is usually necessary to fix the coordinates of one or more points to define the coordinate system. The survey observations alone are not sufficient. Angle observations are completely independent of any coordinate system, and therefore cannot tell us anything about aclual coordinates. Disiance observations tell us only about the scale of a coordinate system, not its orientation or position.

In atn adjustment one can fix a coordinate by inclucling an appropriate equation that specifjes the vatue to be assigned to the coordinate, such as $x_{1}=0, y_{1}$

[^0]$=0$. Such equations have the same furm as regulas observation equations, but do not represent actual observations. They are somefimes colled "direct abservitions of coordinates" and sonverimes called "constraint equations."

Conventionatty, we use the wordts "free adjustrnent" to describe an adjustment that uses just the number of constraint equations necessary to define the coordinate system, but no morc. When more constraint equations are used, we say that we have a "constrained adjustrnent." The wording is perhaps a bit misleading, since a free adjustment indeeri can include constraint equations (those necessary to define the corrdinate syistem). Many authors prefer the phrase "minimal constraint adjustment" to denote a free adjustment; unfortunately, the use of this more descriptive phrase is not universal. When more than the minimum number of constraint eq̧uations are used. the resulting adjusted quantities are constrained not only to be in the proper coordinote system, but aiso lo fit the additional constraints.

Consider the horizontal survey shown in Figure 1. Suppose that points 1 and I are preeexisting marks and we puct a traverse beiween them, setuing the new marks 1 and 2 in the process. We measure the distances ! - 1, 1-2 and $2-J$, as well as the angles $!$ -1-2 and 1-2-1. Thus we have five measurements with which to determine the four conrdinates of the two new points-a redundancy of one.

There are at least two common ways of treating she coordinates of the o!d points. In a horizontal retwaik that condains distance obserthltons, we need thren quantities to define the conrdinate system-two th stefine the origin and one for the orientation. Tinus we might perform at iree adjusiment by constraiaing both coordinates of point ! and one of the two cuordinates of point J. Atternatively, we might constrain tise two coordinales of point I and the azinuth frum I tol.

Free adjustments have the wisturbing progerty that things move wher rhey should stay fixed. In a free

Figure 1. Sample traverse.
adjusiment of the exatmple network, point I is still free 10 move in re direction. This is not goed, since the coordinates of point J have already been determined and published. It might be preferable to make sure that the existing control stays fixed biy constraining both coordinates of both point I and point f in a constrained adjusiment.

Why a Constrained Adjustment is Good

Qur intent is that the coordinates of the old peints i and I serve to "control" the new sunvey. Tt ese old coordinates actnaly accomplish this in three different ways. First, they serve to define the origin and oitentation of the new stivey se that the coordinates of the new puints 1 and 2 ate in the same coordinate system as the old points. Second, they provide a means of detecting blunders in the new survey. Third, the constrained adjnstment dampens the build-up of the effect of accidental error.

The argument alsout constraining the seffect of accidental obserwational errors goes like this: The coordinates of the existing poinls are assumed to be "correct." If the frec adjustment has a misclosure at point J. il must be because of errers in the new survey. If the misclosure is large, we should took for a slunder in the oiscrvations. If it is within the toferance allowed for this type of survey, we distribute the misclosure. The resulting adjusted observations are mere accirate than the obseeved values, and the adjusied coordinate:; from the constroined adjustment are more accurate than those from the free adjustment.
 equalions that are used to fix the coerdinates of the control poinss can lie treated as regelar obscrvationes whose associated variance is zere. Thus we have nine observations altogether-five from the new survey
and four "observallions" of the coordintates of the two o!d oints. We also have eighê unknown parameless athogether - iwo coordinates for cachin of the four points. Let the total set ije obscrvalion equalions be wititen in slandard notation as

$$
\begin{equation*}
A X=8+V \tag{I}
\end{equation*}
$$

where A is the design matrix (partial derivatives of the obscrvations with respect to the parameless), X is the vector of unknown parameters (or corrections to appreximate values of parnmeters), I. contains the observed values (observad minus computed terms\}, and V is the vector of residun!s.

We partition these nine observation equations thes three groups. Let
$A_{1} X=L_{1}+V_{1}$ be the fixe observarion equalions arising from the new survey.
$\lambda_{2} X=\mathrm{L}_{2}+V_{2}$ be the threc observations of old co--rdinates for functions of oid ceorclinates) that are used in the free adjusiment to define the coo:dinate system. Clearly these equations do not involve the coordinates of the new points 1 ard 2 , so A_{2} will have zeroes in the columus corresponding to those coordinates in X .

$\Lambda_{3} X=L_{3}+V_{3}$ be the remaining observation of an eld coordinate (or function of an old courdinate).

Lel the covariznce matrices associated with these three scts of observations be denuted Σ_{1}, Σ_{2}, end Σ_{7}, respectively. Since the coordinates of the oldentrel points are 10 be fixed, we will use $\gtrsim_{2}=0$ and $\Sigma_{3}=$ 0 . However, it will nothurt earyy these quantities symbolical!y.

If we performan adjustment wilh orly the first the sets of observations, we obtain the fece-adjustment estimate X^{-}of X, with covariance matrix Σ^{-}. If we ther seaucrially add the third se!, we oblain the updated (constrained) estimâie.
$X^{2}=\lambda^{-}+\Sigma^{-} \lambda_{3}^{T}\left(\Sigma_{3}+A_{3} \Sigma^{-} A_{3}^{r}\right)^{-1}\left(L_{3}-A_{3} X^{0}\right)$
The covariance matrix of the updated estimate is

$$
\begin{equation*}
\Sigma+=\Sigma^{-}-\Sigma_{\sim}^{W}-\Lambda_{3}^{1}\left(\Sigma_{3}+A_{3} \Sigma^{-}-A_{3}^{5}\right)^{-1} A_{3} \Sigma- \tag{3}
\end{equation*}
$$

This is a wel!-known equatinn. With a change of notration, il is cquation (4.118) int Leics (i990) or ectuation (12.5a) in Mikhail (1970). The sccond term on the right is a positive semidefinite metrix (whether or nol $\Sigma_{3}=0$). Posilive semidefinjte ma!rices ne analogous to numbers shat a:e greater that or equal to zero. Since Σ^{\prime} is equal io $\Sigma-$ minlis a positive semiciefinite matijx, we say that $\Sigma^{+} \leq \Sigma^{-}$, This means that the variance of äny sealer function of X^{\prime} is tess than or equal to the variance of the same funclion cuahiated
at χ^{-}. Intuitively, it means that by adding new information (the third set of equations) to an old set, we cannot make things worse, and generally make things better.

In principle, it is passible to make a new observafion that gives no new information abeut the parameters. For instarice, sve could make an additional observation of a parameter that is already fixed, such as one of the coordinates of point I in the example. This is why tile seconce term on the right ef equ, tion (3) cann be zero. In practice, this almost never happens. In practice, almust all rew obse!vations (including redundant constraints) help. Sometimes they help only a little, but more ofter they make the icsults much better.

Why a Constrained Adjustment May Not Be So Good

The prevanous section scems to prove that the constrained adjustment is $2 . t$ least as good as, and may be much better than, the free adjustment. Furthermore, the constrained adjustment usses all the information avaidable to us, which is intuitively preferistle to a procedure that ignores some data. Why, then, do we hear surveyors complain that they have to "distort" or "degrade" highly accurate GPS surveys to fit the existing NAD 83 cuntrol?

The answer is that the errer-propagation equations given above, and indeed all the error-propagation equations usually associzted with least-squares adjustments. depend on the assumption that the adjustment was performed with a weight matrix that is inversely proportional to the covariance matrix of the observations (i.e., $W=\sigma_{0}^{2} \sum^{-6}$). This assumption does not hold when we fex the contrel proints, since we then carry out the adjustment is if the variances of the cordinates of these points were all zero, while we know that these points are not knowir perfectly.

Leâst-squares estimates are ofter said to be optimal estimates or equivalently, minimum variance linear unbiased estimnates. This means that the least-squares algorithm ean be derived from the priaciple that the covariance matrix of the estimeted parameters must be smallest among all possible linear unbiased estjmates that satisfy the observation equations. The principle of minimum variance really gues to the heart of the motter - it says that we should pick the estimate that is the most accurate. For this reason, many aralysts find the principle of minimum variance to bemore satisfying than the princifile that simely says to minimize the sum of seluares of the residuals. However, when the least-syuares equations are derived fromt the principle of minimum pariance, we mus! expticially use a weight matuix that is inversely proportional to the covariance matrix of the observations (1 ppendix. C).

This means that least-squares adjustments using a weight matrix that is not inversely proportional the covariance matrix of the observa!ions do not have the minimum variance property. Since they are not optimal, we can say that they are suboptimal. In spite oi beingless than optimal, such adjustmenks ate done all the time. In fact, every constrained adjustment in which the control points are held fixed is subuptimat.

Effect of Uncertainties of the Fixed Control

The farnitiar equation

$$
\Sigma_{x x}=\sigma_{0}^{2} \mathbf{N}^{-3}=\theta_{0}^{\prime}\left(A^{\top} W A\right)^{-1}
$$

which says that the covariance matrix of the parameters is proportional to the inverse of the normal equations, does not apply without modification to constrained adjustments. The modified equation is

$$
\begin{align*}
\Sigma_{x x}= & \sigma^{2}\left(A^{\top} W A\right)^{-1} \\
& \div\left(A^{\top} W A\right)^{-t} \lambda^{\top} W B \Sigma_{C C} B^{\top} W A\left(A^{\top} W A\right)^{-1} \tag{3}
\end{align*}
$$

where 13 contains the partial derivatives of the five new obscrvations with respest to the fout coortirates of the two control points I and J; and Sce is the correct 理d covariance matrix of the coordinates of the control poins. Since this equation is notsmelt known, a derivation is given in Appendit 3 .

Equation (5) says that the sxis covariance matrix of the conedinates of the two rew points is the sum of two terms. The first temi gives the contribution of the vakiance of the five new observations, and might be called the internal error; the second gives the contribution of the seal uncertainty of the fixed control, and might be called tive extertral error. Thus we might write

$$
\begin{equation*}
\Sigma_{x x}=\Sigma_{z m t}+\Sigma_{e x t} \tag{6}
\end{equation*}
$$

Equation (a) provides a mathematical explanation of how cortrol networks become inadequate. The classical concept, of course, is that the conirol network is supposed to be much more accurate tiran Hie new densification survey, Nathematically, this means that $\Sigma_{\text {cc }}$ should te so small (in comparison with Ei) that the second term In equation (5) is much straller than the first term. As long as this is 50 , cruation (4) can be used as a reasonable approximation of equalion. (5).

This is incleed how classical control networks are developed. We expect a rough correlation between puepose and accuracy: Primary retworks should be sulveyed to first-order accuracy; sccondary retwiortiss to second-order,etc. As long as this zough comedation horldi, we can use equation (4) instcal of \{5\}.
The concept falls apart if the aciuracy of the neryy survey approaches ex exceeds that of the sxisting
control points. Forinstance, if we try to fit a secundorder traverse between two third-order points, the result is not what is expected of second-order work. The uncertainty of the new points must be tomputed by equation (5), not equation (4). Unforlunately, this is almost never done in practice, with the result that we often do not know how to describe the atcuracy of such points

We also can look at what happens to the adjusted observatlons when the existing control points are held fixed. As shown in Appendix B, the covariance matrix of the adjusted observations also consists of two terms. For example,

$$
\begin{align*}
\Sigma_{1,0 C}= & \sigma_{0}^{2} A\left(\Lambda^{T} W \Lambda\right)^{-1} A^{\top} \\
& +\| A\left(A^{\top} W A\right)^{-1} A^{\top} W-11 \\
& \times B \Sigma_{c} C^{\top}\left[\Lambda\left(\Lambda^{\top} W \Lambda\right)^{-1} A^{\top} W-[]^{\top}\right. \tag{7}
\end{align*}
$$

If the sceond tema in this equation valuishes, then we are left with the conventional expression

$$
\begin{equation*}
\Sigma_{L_{L E}}=\sigma_{0}^{2} \mathrm{~A}\left(\mathrm{~A}^{\top} \mathrm{WA}\right)^{-1} \mathrm{~A}^{T} \tag{8}
\end{equation*}
$$

In this case, the difference between the covariance matiix of the actual olservations and that of the adjusted observations is

$$
\begin{align*}
\Sigma-\Sigma_{L O C}= & \Sigma-\sigma_{c}^{T} \Lambda\left(A^{T} W \Lambda\right)^{-1} \Lambda^{\top} \\
= & {\left[1-\Lambda\left(A^{\top} W A\right)^{-1} A^{T} W\right] } \\
& \times \Sigma\left[1-\left.\Lambda\left(\Lambda^{T} W A\right)^{-1} \Lambda^{\top} W\right|^{\top}\right. \tag{9}
\end{align*}
$$

This is a positive semidefinite matrix. Thus we can write

$$
\Sigma_{L L^{*}} \leq \Sigma
$$

which says that the variance of an adjusted observation is always at least as small as the variance of the actural observation (i.e., the adjusted observations are better).

If the second term in equation (7) does not vanish, equation (10) does not necessarily hold. In fact, it is quite possible that the variances of the adjusted onsemvations could be larger than the variances of the corresponding actual observations. in other words, if we fix the control points, we might cause the adjusted values of the obseivations to be worse than the actual observed values.

The some atguments apply when we try to fit GrS vectors accurate to $1: 1,000,00$ into the existing NA. 53 network, accurate to about i:300,000). We can indeed adjust these vectors while holding the existing control fixed, but the covariance matrix of the new points must then be computed by equation (5), not equation (4). The covariance matrix of the adjusted observations musi be computed by equalion (7), and equation (10) may no: hold.

Elfects on Free Adjustments

Equation (5) also holds for a lree adjustment. We might perform a free adjustment by fixing only those enordinates necessary to define the coordinate system. Following the normal least-squares algorithm, we svould compute the covanance matrix in equation (4). However, this only gives us the uncertainly in the acljusted eoordinates that is duee to the uncertainties of the new observations. It tells us how well the coordinates of the rew points are known relative to the fixed control, but not how well they are known relalive to the datum as a whole. The second lerm in equation (5) accounts for the contribution of the uncertainty of the fixed control.

A free adjustment can be shown to have the property that the columns of matrix B are linear combinations of the cotumas of matrix Λ, sity $B=\Lambda H$ for some matrix II. Ther

$$
\left(A^{T} W A\right)^{-1} A^{T} W B=\left(A^{T} W A\right)^{-1} A^{T} W A H=H
$$

and equation (5) becomes

$$
\begin{equation*}
\left.\Sigma_{x x}=\sigma_{\partial}^{z}\left(A^{\top} W A\right)^{-1}+F\right\} \Sigma_{c c} H^{r} \tag{II}
\end{equation*}
$$

Even more interesting, we then have

$$
\begin{aligned}
& \mid \Lambda\left(\Lambda^{\top} W \lambda\right)^{-1} A^{T} W-11 B \\
&=\left[\Lambda\left(\Lambda^{T} W \Lambda\right)^{-1} \Lambda^{T} W \Lambda H-\Lambda H\right]=0
\end{aligned}
$$

so that the second term in equation (7) varishes. This means that equation (10) holds for all free aldjusto ments, irrespective of how the coordinate system is defined and of the uncertainly of the fixed controi. The coordinates oblained in a free adjustment may be aflected by the errors in the fixed control. but the adjusted observations are not. 'This is the sense in which these adjustments are "free."

l'ractical lmplications

Many starveyors have an intuitive grasp of these mathematical results. They say that the constrained adjustment "distorts" their observations. This does not mean that the ofserved valucs are actuatly changed; it mears lhat the adjusted valuses of the observations are more uncertain, and could, therefore, have greater ernors than the observed vaikes. They rebel against this possibility; no one wants his - or her work to be "degraded" by putting it throusth a process that can produce worse results than one startes with.

Thus many surveyors processing CPS vectors are rejecting constrained adjustments in favor of free adjustments, for which equation (10) holds. Qthers are required by contract to fit their CrPS surveys meo the existing contro! network; bul are unconfortable with this requirement to do so.

The problems described here mathenatically are indeed the trouble with constrained adjustments, and the trouble with the entire concept of a hiesarchy of control networks in which the more accurate retworks control the lower-order surveys. Fron time to lime, new lechnology comes along that alfows new surveys to be performed with higher accuracy timan the existing control network. When this happens, the extended etror-1pronagation echations developed in this acticle must be used, with the unhappy result ritat equation (10) may nol hold.

This situation has anisen twice in tris century. In lice 1960s, the introauction of electronic distance measitement cquipment allowed ne:w surveys to be performed with greater accuracy than the existing NAD 27. This eventually led to the sreation of NAD 83. Now the same situation is occurring again. GPS surveys can be performed with greater accuracy than NAD 83. It is likely thot this situation stoner er later will lead to the computation of a new conlinental dalum.

ACIKNOWI.EDGNENT

The author thanks William E. Strange. chie! geodesist of the Nalional Gerseletic Survey, who arranged for the anony_{12} nus reviewti of this atticle.

RERERENCES

Leick, Alfed. 1990. GPS Safelife Surexying. New York: John Witey and Sous.
Miklail, Edward M. 1976. Odserwations ard Lerss Squares. New York IEP - A Dun-Donnettey Publisher.

^ppendix \wedge : Linear Error Propayation

Lel X be a vector of random variables and let $\gamma=$ $f(X)$ be a vecter of functions of X. Assume that the covariance matrix $\Sigma_{x x}$ is krown. Then the covariance matrix of Y is

$$
\begin{equation*}
\Sigma_{r x}=\left(\frac{\partial Y}{\partial X}\right) \Sigma_{X X}\left(\frac{\partial Y}{\partial X}\right)^{T} \tag{12}
\end{equation*}
$$

With a change of nearion, this is equation (4.34) of Leick (1990) and equation (4.40) of Mixchail (1976).

Appendix B: Effect of Unestinated Parameters

In the example traverse shown in Figure 1, we have lour paints and eight coordinates attogether. Let us partition these into liwo sets. Le't X_{N} be the four copertinates of the twa sew porints 1 and 2 , and let X_{e} be the four coordinates of the lwo existing control points I and J.

Mathematical Developorent

The five observatinus in the traverse sthown in figure 1 involvee ali cight unknowns. This set of five obser-
vation equalions can be writter

$$
\begin{equation*}
A X_{N} \div B X_{C}=L+V \tag{1.3}
\end{equation*}
$$

where the covariance malrix associated with these five observations is Σ

We also wish to add four constraint equations for the coordinates of the existing cortiol points. We witte

$$
\begin{equation*}
X_{c}=L_{c}+V_{C} \tag{14}
\end{equation*}
$$

where the covariance matrix associated with thesc four constraint equations is $\Sigma_{C C}$.

The total set of all iline equations is now

$$
\left(\begin{array}{cc}
A & B \tag{15}\\
0 & \mathrm{~L}
\end{array}\right)\binom{\mathrm{X}_{N}}{\mathrm{X}_{C}}=\binom{\mathrm{L}}{\mathrm{~L}_{C}}+\binom{\mathrm{V}}{\mathrm{~V}_{C}}
$$

with covariance matrix

$$
\left(\begin{array}{cc}
\Sigma & 0 \tag{16}\\
0 & \Sigma_{c c}
\end{array}\right)
$$

The most correct way to treat all these data is to perform the minimurn-variance adjustment, which is ar adjustment of the complete system (15) using a 0×9 weight dratrix that is inversely prepertional to (16). -f course, this is atmost never done, since it might result in changes to the coordinates of the existing control points.

To perform a constrained acljustmenl, we arbisarily (i.e.e withont methematical justification) set the residuals V_{c} in (14) to zero. The result $X_{\mathrm{c}}=\mathrm{L}_{\mathrm{c}}$ is substituted info equation (13), whech is rearranged to read

$$
\begin{equation*}
\Delta X_{N}=\mathrm{L}-\mathrm{BL} \mathrm{~L}_{\mathrm{c}}+\mathrm{V} \tag{17}
\end{equation*}
$$

This system of five ebsenvation equakions in lour unknowns is adjusted with a wcight matrix W that is inversely proportional to Σ, yielding the estinrate

$$
\begin{equation*}
\dot{x}_{N}=\left(\Lambda^{\top} W^{\top} \Lambda\right)^{-1} A^{\top} W^{\prime}\left(1-B L_{C}\right) \tag{18}
\end{equation*}
$$

Since the coordinates of the existing contrel points X_{c} shouza have been carred as unk nowns but were not, they are called "unestimateci paramelers." Even Hought thesp rnordinates are not exsimnted in the senstrazied ackjustratent, we can still take accourt of their effect wher we perform error propagation,
The estimate in (18) has Iwo sources of error - the errors in the five traverse observetions L and the erross in the coosclinares of the existing contrall l-c. Sinte these two groups of cutintities were determinet by di fferent people at different times, we cau reasesnably assume liat they are irdependent. Thus the lotal sel of independent variables is

$$
\overline{\mathrm{L}}=\binom{\mathrm{L}_{\mathrm{C}}}{\mathrm{~L}_{\mathrm{C}}}
$$

Brid the covariante matrix of this vector is given by (16). The partial derivatives are

$$
\begin{align*}
\frac{\partial \dot{X}_{N}}{\partial \bar{L}^{2}} & =\left(\frac{\partial \dot{X}_{N}}{\partial L} \frac{\partial \hat{X}_{N}}{\partial L_{C}}\right) \\
& =\left(\left(A^{\top} W \Lambda\right)^{-1} \Lambda^{\top} W \quad-\left(\Lambda^{\top} W \Lambda\right)^{-1} \Lambda^{\top} W B\right) \tag{19}
\end{align*}
$$

Thus the covariance natrix $\Sigma_{x x}$ of the estimate in (18) is

$$
\begin{align*}
& \ddot{\ddot{n}}_{x x}=\left(\left(\mathcal{A}^{\top} \text { VVA }\right)^{-1} \Lambda^{\top} W-\left(\Lambda^{\top} \text { WA }\right)^{-1} \Lambda^{\top} W B\right) \\
& \times\left(\begin{array}{cc}
\mathrm{y} & 0 \\
0 & \Sigma_{C C}
\end{array}\right)\binom{W^{\top} \lambda\left(\lambda^{\top} W \lambda\right)^{-1}}{-B^{\top} W \lambda\left(\Lambda^{\top} 1 V^{\top} \lambda\right)^{-1}} \\
& =\left(\Lambda^{\top} W \lambda\right)^{-1} \Lambda^{\top} W \mathscr{W} W \lambda\left(\lambda^{\top} W \lambda\right)^{-1} \\
& +\left(\lambda^{\top} \text { V摂 }{ }^{-1} A^{\gamma} W B \Sigma_{C C} B^{\top} W A\left(A^{\top} W A\right)^{-1}\right. \\
& =\sigma_{0}^{2}\left(\Lambda^{\top} W^{\prime} \Lambda\right)^{-5} \\
& +\left(\Lambda^{\top} W A\right)^{-1} A^{\top} W B \sum_{C C} B^{T} W A\left(\Lambda^{T} W A\right)^{-1} \tag{20}
\end{align*}
$$

Similarly, the adjusted value of the tive traversc observations is

$$
\begin{align*}
L^{0}= & A X_{N}+B L_{C} \\
= & A\left(\lambda^{T} W A\right)^{-1} A^{T} W L \\
& -\left[A\left(A^{T} W A\right)^{-1} A^{T} W-\| B L_{C}\right. \tag{21}
\end{align*}
$$

and the covanance matrive of the adjusted observzllons is

$$
\begin{align*}
& \Sigma_{\text {soc }}=\sigma_{0}^{2} \lambda\left(\Lambda^{T} W A\right)-1 \Lambda^{T} \\
& \pm\left[A\left(A^{\top} W A\right)^{-1} A^{T} W-[]\right. \\
& \times \equiv \Sigma_{C^{\top}} B^{\top}\left[\lambda\left(\Lambda^{\top} W A\right)^{-1} \Lambda^{\top} W-1\right]^{\top} \tag{22}
\end{align*}
$$

A Numerical Example

To keep the numerical example snalll, we reinterpret Figure 1 to be a drawing of a leveling network. Points $G_{\text {a }}$ and are now assumed to be benchmarks in the national vertical network. The oblect of the new survey is to determine the elevations of the new poins 1 and 2 Obsenved elevation differences are accumulated, setup by setup, between the marked puints, restafting in the following observations:
Obs.
Model Value (m)

l_{1}	$H_{1}-H_{6}$	5.013	100
l_{2}	$H_{2}-H_{1}$	-17.062	200
1	$H_{1}-H_{2}$	42.771	100

The published elevations of points C and J are $\mathrm{H}_{\mathrm{c}}=$ 123.113 meter and $H_{1}=153.505$ meter. From the adi. 1.5 tment of the national network, we have

$$
\begin{aligned}
\sigma_{\mathrm{E}}^{2} & =0.10 \mathrm{~m}^{2} \\
\sigma_{1}^{2} & =0.010 \\
\sigma_{\mathrm{Cj}} & =0.0075
\end{aligned}
$$

or, in matrix form,

$$
\Sigma_{c c}=\left(\begin{array}{ll}
0.010 & 0.00175 \\
0.0075 & 0.010
\end{array}\right)
$$

The feveling is done to specificat:ons that result in an uncertainty of elevation difference of $0.004 \sqrt{8}$ meters, where K is the length of the line in kilonaters.

Of course, in practice we are net usually given formal standard errors of the elevations of peinis in the national network. It would be even more unustal (almost unhearct of were we actually to be given a tormat covartance between two elcuations. Nevertheless, such numbers do exist in principle, and the numbers given here are reasonable estimates of what might be obrained in a real network. Note that the elcuation errors at yoinls C. and J have a significiant positive-correlation (0.75). This seys that poinis close together share some of the sarre error sources.

We select a value of the reference varrance of $d_{0}^{2}=$ 0,0016 and compute the wivitits as
Obs. Madel Value (mi) istance (km) σ^{2} u

I_{1}	$\mathrm{FI}_{1}-\mathrm{H}_{\mathrm{C}}$	5.013	100	0.0016	1
$\mathrm{~J}_{2}$	$\mathrm{H}_{2}-\mathrm{H}_{5}$	-17.062	200	0.0032	$1 / 2$
l_{3}	$\mathrm{H}_{1}-\mathrm{H}_{2}$	42.771	100	0.0016 J	

The observation equations are then

$$
\begin{aligned}
& \left(\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right)\binom{H_{1}}{H_{2}} \\
& \quad=\left(\begin{array}{r}
5.013 \\
-17.062 \\
42.771
\end{array}\right)-\left(\begin{array}{rr}
\infty 1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)\binom{123.113}{153.805}+\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{x}
\end{array}\right)
\end{aligned}
$$

This is in the form of erpuation (17), so that we immediately identify

$$
\begin{array}{ll}
A=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right) & \Gamma=\left(\begin{array}{r}
5.013 \\
-17.062 \\
42.871
\end{array}\right) \\
B=\left(\begin{array}{rr}
-1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) & L_{C}=\binom{123.813}{153.505}
\end{array}
$$

The seight malrix is

$$
W=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We compute

$$
\left(\Lambda^{\tau} W A\right)^{-1}=\left(\begin{array}{ll}
0.25 & 0.25 \\
0.25 & 0.75
\end{array}\right)
$$

aud, by equation (18),

$$
\dot{X}_{v}=\binom{H_{1}}{H_{0}}=\binom{128.1185}{111.0415}
$$

The true covariance matrix is computed by equation
(20). We get

$$
\lambda^{\prime} W W=\left(\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right)
$$

and

$$
\begin{aligned}
s_{x x} & =0.0036\left(\begin{array}{ll}
0.75 & 0.25 \\
0.25 & 0.75
\end{array}\right)+\left(\begin{array}{ll}
0.0030625 & 0.0084375 \\
0.0084375 & 0.0090625
\end{array}\right) \\
& =\left(\begin{array}{ll}
0.0012 & 0.0004 \\
0.000 / 4 & 0.0012
\end{array}\right)+\left(\begin{array}{ll}
0.0050625 & 0.0084 .375 \\
0.0084375 & 0.0490625
\end{array}\right) \\
& =\left(\begin{array}{ll}
0.0102625 & 0.0088375 \\
0.0088375 & 0.0102625
\end{array}\right)
\end{aligned}
$$

As expected, the uncerlainty of the fixed control pointis dominates this expression. The uncertainlies of the elevations of the new points are much larger than would have been expected from the accuracy willin twhich the new survey was performed. The elevations of two new points arc also highly correfaled, silzce they share the uncertainties of the control points.

The covaliance matrix of the adjusted observations can be found by evaluating equation (22). This yields

$$
\begin{aligned}
\Sigma_{102 \cdot}= & \frac{0.0016}{4}\left(\begin{array}{rrr}
3 & -2 & -1 \\
-2 & 4 & -2 \\
-1 & -2 & 3
\end{array}\right)+\frac{0.010}{16}\left(\begin{array}{lll}
2 & 4 & 2 \\
4 & 8 & 4 \\
2 & 4 & 2
\end{array}\right) \\
= & \left(\begin{array}{rrr}
-0.0012 & -0.0008 & -0.0017 \\
-0.0008 & 0.0016 & -0.0008 \\
-0.0008 & -0.0008 & 0.1012
\end{array}\right) \\
& +\left(\begin{array}{lll}
0.00125 & 0.0025 & 0.00125 \\
0.0025 & 0.0050 & 0.0025 \\
0.00125 & 0.0025 & 0.00125
\end{array}\right) \\
= & \left(\begin{array}{lll}
0.00245 & 0.0017 & 0.00085 \\
0.0017 & 0.0066 & 0.0017 \\
0.00085 & 0.0017 & 0.00215
\end{array}\right)
\end{aligned}
$$

The uncertainty of the fixed enntrol points, responsible fer the second teim, also dominares this expression. Furthermore, remembering thas the covariance matrix of the observed quantities is

$$
3:=\left(\begin{array}{ccc}
0.0016 & 0 & 0 \\
0 & 0.0032 & 0 \\
0 & 0 & 0.01616
\end{array}\right)
$$

We see that tie second term couses the covarjance matrix of the actjusted observations to be larger that the covariance natrix of the actual observations.

Appendix C: Minimurn Variance Adjustment (Gauss-Markov Theorem)

Consider the linear model

$$
\begin{equation*}
\Delta x=L+V \tag{1}
\end{equation*}
$$

in which the olescroationsare tintiased and have cevari. nice matix 5 . We look for an estimate \dot{X} of X that is

1. Best (im the sense of minislusn variance), so that $\Sigma_{x x}=E\left\{(\dot{x}-x)(\hat{x}-x)^{[}\right]$is a minimuln
2. Linear in the observations L . so shar $\dot{x}=\mathcal{B} L$ for some matrix B
3. Unbiased so |hat $E[\bar{x}]=x$

We must define what we niear by miminizing a covariance matr.x. Since there is no strict ordering of matrices, we must mininize some scalce neasure of the matrix. A common choice is to minimize the lince $7^{1} \mathrm{~S}_{x x}$.

Since the observations are unbiased, $\mathfrak{t}[\mathrm{V}]=0$ and $[[\square]=\mathrm{AX}$. ТҺел
and by the untiased propenty, we muss have $B A x=x$. Strice this muse hold irsespective of die value of X. we must have

$$
\begin{equation*}
B A-i=0 \tag{23}
\end{equation*}
$$

If there are u unknown paxameters X, (23) represents u^{2} separate equafions. Let Λ be a matrix of u^{2} Lagrange mullipliers. "hen

$$
\operatorname{Tr}[(B A-1) \Lambda]
$$

represents the sum of all u^{2} equations in (23), each multiplied by a lagtange multiptier.

Furthermore, since $\mathrm{X}=\mathrm{E}[\hat{\mathrm{X}}]=\mathrm{E}|\mathrm{BT}|=\mathrm{BE}|\mathrm{L}|$, we have

$$
\dot{X}-X=B L-B E[L]=B(L-E(L))
$$

so that

$$
\begin{align*}
\Sigma_{x x} & =E!(\dot{X}-X)(\dot{\lambda}-X)^{\top} \\
& =B E\{(L-E l L])\left(\left(\sum-E\{L\}\right\}^{\top}\right) B^{\top}=13 E\{ \}^{\top} \tag{24}
\end{align*}
$$

Now the problem is io nunimize the augmented cos! function

$$
\begin{equation*}
\Phi=\operatorname{Tr}\left(\mathbf{B E} \mathbf{V}^{\top}\right)+2 \operatorname{Tr}((1 i \Lambda-1) \wedge) \tag{25}
\end{equation*}
$$

Tias is done by differentiatisg (25) with respora en \mathbb{B} aud ho and selitig cach set of patial derivatives in dero. We gel

$$
\begin{equation*}
\frac{\partial \Phi}{\partial B}=0 \Rightarrow 2\left(\sum B^{T}+A \Lambda\right)=0 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial!\mid}{\partial A}=0 \Rightarrow B A-1=0 \tag{27}
\end{equation*}
$$

From (26) we oftain

$$
\mathbf{B}=-\Lambda^{\top} \mathbf{A}^{\top} \Sigma^{-1}
$$

Tinus
andusthy \{27\}

$$
B A=\Lambda^{T} A^{T} \Sigma^{-1} A=1
$$

so

$$
\Lambda^{T}=-\left(A^{T} \Sigma^{-1} A\right)^{-1}
$$

and

$$
\begin{equation*}
B=\left(A^{T} \Sigma^{-1} A\right)^{-1} A^{T} \Sigma^{-1} \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\hat{X}=\left(A^{T} \Sigma^{-1} A\right)^{-1} A^{\tau} \Sigma^{-1} L \tag{28}
\end{equation*}
$$

is the best linear urbiesed estimator. As a final mod. ifacation, we car write $\Sigma^{-1}=\left(1 / \sigma_{0}^{2}\right) W$ in (28). The two appearances of σ_{α}^{2} cancel each other, yielding the familiar form

$$
\dot{x}=\left(A^{\top} W A\right)^{-1} A^{\top} W L
$$

[^0]: Chearles R. Sichware is Chief af Systems Development for the National Geodktic Surnex. 1315 East-West Higtooy. Situer Sprang. MD $3 / 1 y 10$ ard is editor of Surveling and I, and Intornaatorn Systens.

