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AUTO��TIC DETECTION OF LOOPS IN LEVELING NETWORKS 

Edward H. Herbrechtsmeier 
National Geodetic S urvey 

National Ocean S urvey, NOAA 
Rockville, Md. 208 52 

ABS TRACT. This publication describes an algorithm for 
finding a minimal set of fundamental loops in a network 
and discusses the application of the algorithm to level­
ing networks. 

INTRODUCTION 

Loops in leveling networks have historically been used for two purposes. 
First, the observed elevation differences around a loop are expected to sum 
to zero. Any misclosure (deviation of this sum from zero) is assumed to be 
due to observational, recording, or computing errors. The misclosure of a 
loop has been a primary tool for controlling the quality of field observations 
and computations, with various tolerances on the loop misclosure correspond­
ing to various instrumentation and observing procedures. Misclosures in a 
network of loops may be used to isolate blunders. If two neighboring loops 
have large misclosures of nearly equal magnitude but opposite sign, then one 
or more blunders may exist in the common segment. 

The second use for leveling loops has been to serve as a basis for adjust­
ment by condition equations. The condition that the adjusted elevation 
differences around each loop must sum to zero gives rise to one condition 
equation for each loop. However, it may be shown that only £ = n - b + 1 of 
these loops are independent, where b is the number of bench marks and n is 
the number of observations between bench marks. To use loop closures as a 
basis for adjustment, it is necessary to find a set of exactly independent 
loops. The common practice has been to use experience and intuition, as well 
as a sketch of the network, to find a satisfactory set of independent loops. 
To my knowledge, there has previously been no satisfactory automatic algorithm 
for finding such a set of loops. At least one algorithm for finding an 
independent set of loops in a horizontal network has been published (Steeves 
1978), but it is not suitable for the task at hand because it does not find a 
minimal set of loops. 

Host adjustments of leveling nets are now done by computer programs. Most 
of these programs, including the LEVELl program used by the National Geodetic 
S urvey, are based on observation equations rather than condition equations. 
The problem of finding an independent set of loops for the purpose of adjust­
ment has, therefore, largely disappeared, although the use of loops for iso­
lating blunders in observations prior to adjustment remains au important 
problem. 

The National Geodetic S urvey has previously used network sketches to find 
the loops of a net1.vork. However, this method is time-consuming, labor­
intensive, and generally creates a bottleneck in a system where most other 
tasks are performed on the computer. Furthermore, a sketch does not always 



adequately reflect the data at hand. The algorithm described here is designed 
to replace the process of determining loops from sketches. The design 
criterion for the algorithm is based on the following requirement. It should 
automatically "find that set of loops which would have been found by an analyst 
working with a sketch of the network." This turns out to be an impossible 
task, since the decisions made by the analyst with a sketch are not precisely 
defined, especially for a complicated network. Therefore, the criterion was 
modified to require agreement with the loops found by the analyst with a 
sketch "most of the time and especially for simple networks." This criterion 
was met. 

THE LOOP GENERATION ALGORITHH 

The objective of this algorithm is to generate a fundamental set of loops 
that are minimal or at least near minimal (defined below). The algorithm 
openates on the graph associated with the leveling network and assumes: 

l. Th2 length of each edge is known. 
2. The graph is not disjoint. 
3. The gralJh may or may not be planar. 
4. The edges do not have directions associated with them. 
5.  The graph contains n edges and b vertices. 

For a given graph, it may be possible to find many loops. Certain subsets of 
loops are said to be fundamental sets if all of the possible loops in the 
graph can be generated by combining (in an algebraic sense) loops from the 
subset. The number of loops, t, in a fundamental set is given by 

t = n - b+l. 

A fundamental set is said to be minimal if the sum of the lengths of the loops 
in the fundamental set is the smallest of all the possible fundamental sets. 
An individual loop is said to be minimal if it cannot be decomposed into a 
number of smaller loops. 

The algorithm has three parts. In the first part, the graph is simplified 
and some or all of the loops may be found (i.e., the second and third parts 
may not be needed). The second part of the algorithm forms a spanning tree, 
having the property that the sum of the lengths of its edges is minimal, and 
generates an ordered list of edges that are not in the spanning tree. No 
loops are found in the second part of the algorithm. The third part of the 
algorithm uses the spanning tree and the list of edges to find the remaining 
loops. All of the loops found in the first part are minimal while some of 
the loops found in the third part may not be minimal. The first part of the 
algorithm is not a necessity, but its use makes the second and third steps 
computationally easier and more efficient. 
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Part 1 

Second-degree vertices, spurs, and self-closing loops are removed from the 
graph of the network in this part of the algorithm. Second-degree vertices 
are removed because their absence greatly reduces the computational burden 
of the other portions of the algorithm. This is accomplished by replacing 
the series of edges by "equivalent" edges. For example, consider a set of n 
vertices vI' v2 , ••• , vn• Assume that the degree of vI and vn is not 2 and 
that the degree of v2 ,  v3, ••• , vn-l is 2 . This implies a set of edges 
el, e2 , ••• , en-l connecting the vertices. These edges can be replaced by 
one equivale nt edge, e' , whose le ngth is equal to the sum of the replaced 
edges. This also eliminates the vertices v2 ' v3, ••• , vn-l· 

Spurs are defined as edges that are incident to vertices of degree 1, which 
implies that such edges cannot lie within a loop. Spurs are simply deleted 
from the graph. Note that when a spur is removed, the vertex of degree 1 to 
which it was incident is also removed. 

Self-closing loops are defined as loops that pass through, at most, one 
vertex of degree 3 or higher. Hence, no portion of a self-closing loop can 
be a portion of any other loop. Therefore, self-closing loops are, by defi­
nition, minimal loops. Finding the self-closing loops here simplifies the 
logic in the third part of the algorithm. Once found, they are removed from 
the graph by deleting the edges in the loop. This also removes all second­
degree vertices in the loop from the graph. 

These three steps (remove second-degree vertices, remove spurs, find and 
remove self-closing loops) are repeated until the graph contains no second­
degree vertices, spurs, or self-closi ng loops. The repetition is required 
because the removal of a spur can create a self-closing loop or a second­
degree vertex, and the removal of a self-closing loop can create a spur or a 
second degree vertex. 

Part 2 

This part of the algorithm develops a spanning tree (breadth first) and an 
ordered set of "closing edges" for the graph generated in Part 1. A closing 
edge is defined as an edge that is not in the spanning tree and is incident 
to a different branch of the spanning tree at each of its endpoints. In fact, 
every edge that is not in the spanning tree is a closing edge. 

The spanning tree will be generated such that the distance from the starting 
vertex, or root, to any other vertex will be minimal. This is done by choos­
ing edges f or the tree from a list of candidate edges, each of which has a 
score associated with it. The score for the candidate edge is computed as 
follows: An edge becomes a candidate when one of its endpoints is added to 
the spanning tree. This endpoint will be called the near end, i.e. , the end 
nearest the root of the graph. The other endpoint will be called the far end. 
The score for the edge is then the distance in the tree from the root to the 
near end plus the length of the edge. 
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There are several preliminary steps to the algorithm. First, the starting 
vertex, or root, must be chosen. The choice of the root is arbitrary. The 
algorithm will need a table that gives the distance (in the tree) of all 
vertices in the tree from the root. This distance for the root is set to zero, 
and the distances for the other vertices are set to the -1 to indicate that 
they have not yet been added to the tree. The list of candidate edges ini­
tially contains all edges incident to the root. The list of closing edges is 
empty. The algorithm then proceeds as follows: 

1. S elect the edge with the lowest score from the candidate list, add it 
to the tree, and remove it from the candidate list. 

2. S et the distance of the vertex at the far end of the edge added in 
S tep 1 to the score of that edge. Call this vertex the new vertex. 

3. Test each edge incident to the new vertex and not in the tree. If the 
edge is in the candidate list, move it to the list of closing edges; 
otherwise compute its score and move it to the candidate list. If 
several closing edges are found at the new vertex, they are put into 
the list of closing edges according to their score, i.e., lowest score 
first. 

4. If the list of candidate edges is not empty, go to S tep 1. 
of candidate edges is empty, the spanning tree is complete 
closing edges have been found. 

Part 3 

When the list 
and all 

This part of the algorithm uses the spanning tree and the list of closing 
edges generated in Part 2 to find the remaining loops. One loop is 
found for each edge in the list of closing edges. The spanning tree 
will have edges added to it in this part of the algorithm. Therefore, it 
will no longer be a spanning tree and will be referred to as the subgraph. 

The following steps are performed for each edge in the list of closing edges, 
in the order of the list of closing edges: 

1. Find the shortest path in the sub graph that connects the endpoints of 
the closing edge. This path and the closing edge form a loop. 

2. If the path contains more than one edge, add the closing edge to the 
subgraph. If the path contains only one edge, the closing edge is 
parallel to the edge that forms the path and is, therefore, not added 
to the graph. 

The algorithm used to compute the shortest path between the endpoints of 
the closing edge is similar to the algorithm used to build the spanning tree. 
A. " h h II · d - s ortest pat tree 1S starte at one end of the closing edge. Each edge 
in the subgraph incident to this vertex is scored and put into a list of 
candidates. (The closing edge is not in the subgraph.) The algorithm then 
proceeds as follows: 

4 



1. S elect the candidate with the lowest score and put it in the shortest 
path tree. 

2. If the newly selected edge is incident to the closing edge, go to S tep 4. 

3. Test each edge in the subgraph incident to the far end of the newly 
added edge. If the edge has already been scored, remove it from the 
candidate list. (It cannot be part of the shortest path. ) Otherwise, 
score it and add it to the candidate list. Go to S tep 1. 

4. The shortest path is found by starting at the end of the closing edge 
opposite the root of the shortest path tree and then by following the 
shortest path tree down to its roots. 

S PECIAL CAS ES 

In applying this algorithm to leveling networks, the real objective is to 
generate the loops that one " sees" as minimal in a network sketch. The 
algorithm will not always do this because the length of a path followed by a 
leveling crew does not represent the straight line distance between bench marks. 
For instance, consider the portion of a leveling network shown in figure 1. 

1.0 

1.0 

/ 

c 

2.0 
)------------iB 

2.1 

1.0 1.0 
0)-------1 

Figure l. --A special case. 

/ 

2.0 

The numbers indicate the relative lengths of the links. The loop seen as 
minimal are ABFECA and EDCE. The algorithm will find EDCE correctly, but it 
will find ABFEDCA instead of ABFECA because the path EDC is shorter than EC. 
This situation can occur whenever the network contains a three- sided loop in 
which the sum of the lengths of two of the sides is shorter than the length of 
the third side. 

The algorithm may appear to fail for networks that cannot be represented by 
a planar graph. 
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In figure 2, the algorithm will find the loops ABFEA, BCGFB, CDHGC, and 
AEHDA plus three of the following four loops: EFGE, EGHE, EFHE, and FGHF. 
This happens because the four "outer" loops, plus three of the "inner" loops, 
form a fundamental set. In other words, the closure of the fourth inner loop 
(i.e., the one not found by the algorithm) can be derived from the closures of 
the other three inner loops. 

A�--------------------------------� 

Et-------------� 

t-----------------i G 

D �-------------------------�C 

Figure 2. --A nonplanar network. 

IMPLEHENTATION AND PERFORHANCE 

The algorithm has been implemented as a computer program named LOOPI. The 
program is written in the PL/ I language for the IBH PL/ I Optimizing Compiler 
and runs under the IBM 11VS operating system. It may be run on any machine 
supporting this compiler and operating system with sufficient memory. The 
memory required is approximately l60K bytes plus 30K bytes for each 1, 000 

bench marks in the network. 

The LOOPI program is integrated into the NGS system for the processing of 
leveling data. The primary input is a LEVELl input file created by the S ELECT 
program, which is used to interface application programs to the permanent 
vertical data base files, known as Working File and Vertical S ynoptic File. 
With this input, LOOPI can automatically compute the closures of a minimal or 
near minimal set of fundamental loops in the network without any instructions 
froln the user. Alternatively, the user may explicitly request LOOPI to compute 
the closure(s) of any loop(s) in the network. In addition, if the output file 
from a LEVELl adjustment of the network is available, LOOPI will compute the 
correction rates between junction points. (S ee appendix.) 
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Detailed instructions for using this program are given in the appendix. 
The timing information listed in table 1 was obtained from runs made on an 
IBM 3033. 

Table l.--LOOPI central processing unit (CPU) usage 

Vertices/ 
Bench marks/ edges in S elf-
observations graph after closing Other CPU time 

input reduction loops loops (sec) 

2542/2572 20/31 3 12 2. 98 

2664/28 38 118 /206 20 8 9  6. 35 

2179/248 0 255/428 9 174 24. 53 

ACKNOWLEDGMENT 

The author would like to thank Dr. Richard A. Snay of the National Geodetic 
S urvey for suggesting the idea of using a spanning tree and an ordered set 
of edges and for his helpful discussions. 

BIBLIOGRAPHY 

Cribb, D. W. , RingeI sen, R. D., and S hier, D. R., 198 1: On cycle bases of a 
graph. Technical Report No. 362, Clemson Univers�_ty, Clemson, S .C. 

Deo, Narsingh, 1974: 
Computer S cience. 

Graph Theory with Applications to Engineering and 
Prentice-Hall, Englewood Cliffs, N.J. 

Steeves, Peter A., 1978 : Economization of parametric horizontal control 
adjustment via condition equations. Proceedings of the S econd International 

��o_sium on Problems Related to the Redefinition of North American Geodetic 
Network�, Arlington, Va., April 24-28 , pp. 535-554. National Geodetic 
Information Center, Rockville, MD 208 52. 

7 



APPENDIX.--PROGRAM DESCRIPTION AND USER'S GUIDE 

A fundamental set of loops is defined as a set whose members can be combined 
to yield the closure of any loop in the network. The number of loops in a 
fundamental set is equal to the number of links minus the number of junctions 
plus one. A minimal loop is a loop that cannot be decomposed into a set of 
shorter loops. Consider the following example: 

A I-------i C I-------i E 

B l--------{DI----�F 

All of the links in the above network are assumed to be of the same length. 
The network contains three loops: ACDBA, CEFDC, and ACEFDBA. The number of 
loops in a fundamental set is 

L number of links - number of junctions + 1 
7 - 6 + 1 = 2. 

Any two of the three loops in this network constitute a fundamental set. 
However, the minimal set of fundamental loops contains ABDCA and CDFEC. Note 
that these two loops can be combined to form the loop ABDFECA. Therefore, 
ABDFECA is not minimal because it can be decomposed into a set of shorter 
loops. 

LOOPI performs several transformations on a network to simplify computation. 
No changes are made to the input file. The first transformation that LOOPI 
will make is the removal of multiple observations. Each set of multiple 
observations is removed and replaced by a single observation. The height 
difference for this new observation is the weighted mean of the height 
differences of the multiple observations, and its length and variance are 
equal to the respective mean values of the multiple observations. For each 
set of mUltiple observations, LOOPI will list the new mean observation and 
each of the multiple observations along with their deviations from the mean 
height difference. Any observation that deviates from the mean by more than 
the allowable deviation will be flagged. This allowable deviation, A, is 
based on loop misclosure tolerances and is computed as 

A = SQRT( 0.5 * HAX(O.250, k) ;� TOUo'�2 ) 

where 

k = section length in kilometers, 
TOL = loop misclosure tolerance in mm/SQRT(k) based on class and order. 

If the section length is less than 0.25 km, then 0.25 km will be used for 
this computation. 
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After LOOPI has removed any multiple observations, it will remove any spurs, 
fold out second-degree marks, and remove any self-closing loops (spur loops) . 
These three steps are repeated until all spurs, second-degree marks, or self­
closing loops in the network are eliminated. These three steps must be 
repeated because the removal of a spur can generate a self-closing loop or a 
second-degree mark, and the removal of a self-closing loop can generate a 
spur or a second-degree mark. Consider the following example: 

The spur observations PQ and QR will be removed. Note that this will make P 
a second-degree mark. The second-degree marks E, G, J, L, N, and P would be 
folded out next. The network would then look as follows: 

As can be seen in the above diagram, a self-closing loop would exist at mark 
H. Upon removal of this self-closing loop the link KH would become a spur. 
This spur would then be removed which would cause mark K to become a second­
degree mark. Hark K would be folded out and the resulting self-closing loop 
at mark H would be removed. The network would then look as follows: 
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The spur FH would then be removed. This would cause mark F to become a 
second-degree mark which would in turn be folded out. The network would then 
look as follows: 

In this manner the original network containing 20 observations and 16 marks 
would be reduced to one network containing 6 links and 4 junctions. LOOPl 
would then find the remaining loops using its auto-loop algorithm. It would 
list the closures for these loops and all of the self-closing loops. 

The computation of the allowable misclosure for a loop is based on the order, 
class, and length of each section in the loop. An allowable variance for each 
section is computed as the tolerance squared times the section length. If the 
section length is less than 0.25 km, 0.25 km will be used for this computa­
tion. The tolerance is a function of the order and class of the survey. The 
allowable misclosure is computed as the square root of the sum of the allow­
able variances of the sections in the loop. LOOPl will flag any loop whose 
misclosure exceeds the allowable misclosure. 

LOOPl can compute the correction rate for each link in the network if a 
LEVELl output file (i. e. , adjusted elevation file) is available. The 
correction rate, C, is computed as 

C = (DHA - DHO)/K 

where 

DHA adjusted height difference in millimeters, 
DHO observed height difference in millimeters, 
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K = length of the link in kilometers. 

This correction rate is the average rate for a link. Individual sections in 
a link may have different correction rates because of the weighting scheme 
employed in LEVELl. Under this scheme, sections having the same length but 
different classes and/or orders will receive different weights in the adjust­
ment. 

LIMITATIONS 

LOOPl can accommodate networks containing up to 1 6,38 3  observations. This 
number is also the upper limit for programs SELECT and LEVELl. 

The objective of the automatic loop misclosure algorithm is to find the 
misclosures the user would "see" as minimal in a network sketch. However, 
LOOPl cannot always do this. Consider the following example: 

1.4 1.5 
�1.0-+ 3.0 

1.4 1.5 

The numbers in the diagram indicate the relative length of the links. It 
would seem reasonable to expect that LOOPl will find the loops ABCA, ACDA, 
and CBDC. However, instead of finding CBDC, it will find BDAB. This results 
from LOOPl trying to find the shortest path between B and D that can be 
combined with link BD to form a loop. The path BAD has a length of 2. 8 
whereas the path BCD has a length of 3.0; thus LOOPl will combine BAD with CD 
to form BDAB. 
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JOB SETUP 

IIx9Z JOB (S4l7,CB1,1,9), 'name - bin#' 
IlpROCLIB DD DS N=CNS420. S 7D. PROCLIB,DIS P=SHR 
IlsTEPl EXEC LOOP1,INIT=X9Z,ACNT=s4l7,UNIT=3330, 
II VOL=NGS 003,DS N='LEVEL. NET' 
I IGo. S YS IN DD ,� 
TITLE S AMPLE RUN 
OPTIONS TIMING 
LOOP ABOOOl (15) AB0003 (23) ABOOOs 
LOOPX (67) ABOOOl 
LOOP ABOOOS (23) (212) (llO) (7) 

EXEC CARD PARAHETERS 

The parameters on the EXEC card are described next. They are shown as 
parameter = default followed by an explanation. 

ACNT=s4l7 

This paran�ter is optional. It indicates the account under which the 
adjustment input file is stored. 

INIT= 

This parameter is required. It indicates the initials under which the 
adjustment input file is stored. 

UNIT=3330 

This parameter is optional. It indicates the type of disk drive on 
which the adjustment input file is stored. 

VOL=NGS 003 

This parameter is optional. It indicates the name of the disk pack on 
which the adjustment input file resides. 

DS N= 

This parameter is required. It supplies the last portion of the data set 
name of the adjustment input file. For this, the name of the adjustment 
input file would be CNS4l7. X9Z.ADJIN. LEVEL. NET. 

These parameters may be in any order on the EXEC card. Note that the EXEC 
card in the above example could have been coded equivalently as 

IlsTEPl EXEC LOOP1,INIT=X9Z,DS N='LEVEL. NET' 

If a LEVELl output file exists for a network, the correction rates between 
junctions can be obtained by executing LOOP1A. For example, 
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//STEPI EXEC LOOPIA, INIT=X9Z, DS N='LEVEL.NET' 

The adjusted height of each junction will also be listed. 

USER INPUT - FILE S YS IN 

LOOPl reads only columns 1-71 (inclusive) of the cards input through this 
file to make it more convenient to submit runs via SUPERWYLBUR. All of the 
cards in this file are free format; i.e. , there are no specific column loca­
tions for the items on the cards (except they must be in columns 1-71). The 
items or fields on each card are to be separated by one or more blanks; do not 
use commas or other characters to separate fields. 

Three types of cards can be input through this file, namely, TITLE, OPTIONS , 
and LOOP cards. All of these cards are optional; however, the DD card for file 
S YS IN must always be included. The TITLE card is used to input a title that 
will be printed as part of the heading on each page of output. Code the word 
TITLE in the first field and code the title in the second field. 

The OPTIONS card is used to modify the output of LOOPI. Code the word 
OPTIONS in the first field followed by one or more of the options listed 
below. Each option has two possible values. They are listed as default 
value/optional value. 

AUTO/NOAUTO 

This option indicates whether or not the user wants LOOPI to generate 
a set of loop misclosures automatically. 

S CLOOP/NOS CLOOP 

This option indicates whether or not LOOPI is to list the misclosures of 
self-closing loops. 

LISTCOM/NOLISTCOM 

This option indicates whether or not LOOPl is to list combined observa­
tions. The observations will be combined in any case. 

NOTIMING/TIMING 

This option indicates whether or not LOOPI is to print a breakdown of its 
CPU usage. 

Any number of OPTIONS cards may be input. If any option is included more than 
once, the last value found will be used. 

The LOOP and LOOPX cards are used to specify additional loops for which the 
user wants misclosures. Listed next are some rules for specifying loops. 
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1. The first element in the specification must be an ACRN. (An ACRN is a 
code assigned by NGS to uniquely identify bench marks.) 

2. If the last element in a specification is an ACRN, it must be identical 
to the first ACRN. 

3. The path specified must be continuous. 

4. The path specified must close on itself at the starting ACRN and only at 
the starting ACRN. 

5. The path specified must not be ambiguous. 

6. Link numbers must be enclosed in parentheses. Blanks are not allowed 
inside parentheses. 

There are several ways to specify the path of a loop. These will be explained 
with the aid of an example. 

/ABr1) (100) CABT2\ 
(67) (1S) (78) (73) 

(212) 

(23) (110) 

I 
ABOOOS (7) (ABOO06) 

The numbers in parentheses in the network shown above are link numbers 
generated by LOOP1. To request the computation of the misclosure of a loop 
code a card with the word "LOOP" in the first field and code the ACRN of the 
mark at which the loop starts and ends in the second field. Code the link 
numbers and/or ACRNs that form the rest of the loop specification in the third 
and remaining fields. 

Suppose that one wants LOOPl to compute the closure of the loop ABOOOl -
AB0003 - ABOOOs - ABOOOl. The most detailed specification ,.,rould be 

LOOP 
LOOPX 

ABOOOl 
(67) 

(15) 
ABOOOl 

AB0003 (23) ABOOOs 
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Note the LOOPX card. It is used as a continuation of the preceding LOOP card. 
A LOOP card may be continued onto any number of LOOPX cards. The two cards 
cited could be read as follows: S tart at mark ABOOOl and proceed via link 15 
to mark AB0003, then proceed via link 23 to mark AB0005, then proceed via 
link 67 to mark AB0001. As stated previously, this specification is the most 
detailed. Here are some alternative specifications that are equivalent: 

LOOP ABOOOl 
LOOP ABOOOl 
LOOP ABOOOl 

(15) (23) (67) 
AB0003 AB0005 ABOOOl 
(15) AB0005 (67) 

The above example means that the first card starts at AB0001, then proceeds 
via links 15, 23, and 67, returning to AB0001. The second card starts at 
AB0001, then goes to AB0003, AB0005, and returns to AB0001. The third card 
starts at AB0001, proceeds via link 15 to AB0005, and returns via link 67 
to AB0001. 

In the rules for specifying loops, it was stated that the specification of 
the path of the loop must not be ambiguous. S uch a situation can occur when 
more than one link exists between two junctions. For example, consider a loop 
that starts at AB0001, then goes to AB0002, then goes to AB0004, then goes to 
AB0003, and then returns to AB0001. There are two links between AB0002 and 
AB0004. In such a case, the user must specify which link is to be used by 
including the link number (either 73 or 78 in this case) of that link. 
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