
NOAA Technical Memorandum NOS NGS 35

AUTOMATIC DETECTION OF LOOPS IN LEVELING NETWORKS

Rockville, Md.
July 1982

u.s. DEPARTMENT OF /
COMMERCE

National Oceanic and

Atmospheric Administration

/ National Ocean

Survey

NOAA Technical Publications

National Ocean S urvey/National Geodetic S urvey
subseries

The National Geodetic S urvey (NGS) of the National Ocean S urvey (NOS) , NOAA,
establishes and maintains the basic national horizontal and vertical networks
of geodetic control and provides Government-wide leadership in the improve­
ment of geodetic surveying methods and instrumentation, coordinates operations
to assure network development, and provides specifications and criteria for
survey operations by Federal, S tate, and other agencies.

NGS engages in research and development for the improvement of knowledge of
the figure of the Earth and its gravity field, and has the responsibility to
procure geodetic data from all sources, process these data, and make them
generally available to users through a central data base.

NOAA geodetic publications and relevant geodetic publications of the former
U. S . Coast and Geodetic S urvey are sold in paper form by the National
Geodetic Information Center. To obtain a price list or to place an order
contact:

National Geodetic Information Center (C18 x2)
National Ocean S urvey, NOAA
Rockville, MD 20852

(301) 443-831 6

When placing an order, make check o r money order payable to:
National Geodetic S urvey. Do not send cash or stamps.

Publications can also be purchased over the counter at the National
Geodetic Information Center, 1 1 400 Rockville Pike, Room 1 4, Rockville, Md.
(Do not send correspondence to this address.)

NOAA Technical Memorandum NOS NGS 35

AUTOMATIC DETECTION OF LOOPS IN LEVELING NETWORKS

Edward H. Herbrechtsmeier

National Geodetic S urvey
Rockville, Md.
July 1982

For sale by the National Geodetic Information Center,

UNITED STATES

DEPARTMENT OF COMMERCE

Malcolm Baldrige, Secretary

Rockville, MD 20852 Price $2. 40

/ National Oceanic and / Natio n al Ocean

Atmospheric Administration Survey

John V Byrne, Administrator Herbert R. Lippold, Jr, Director

CONTENTS

Abstract. I

Introduction. I

The loop generation algorithm. 2

S pecial cases. 5

Implementation and performance. 6

Acknowledgment. 7

Bibliography. 7

Appendix. Program description and user's guide. 8

Mention of a commercial company or product does not
constitute an endorsement by the National Oceanic. and
Atmospheric Administration. Use for pUblicity or ad­
vertising purposes of information from this publica­
tion concerning proprietary products or the tests of
such products is not authorized.

iii

AUTO��TIC DETECTION OF LOOPS IN LEVELING NETWORKS

Edward H. Herbrechtsmeier
National Geodetic S urvey

National Ocean S urvey, NOAA
Rockville, Md. 208 52

ABS TRACT. This publication describes an algorithm for
finding a minimal set of fundamental loops in a network
and discusses the application of the algorithm to level­
ing networks.

INTRODUCTION

Loops in leveling networks have historically been used for two purposes.
First, the observed elevation differences around a loop are expected to sum
to zero. Any misclosure (deviation of this sum from zero) is assumed to be
due to observational, recording, or computing errors. The misclosure of a
loop has been a primary tool for controlling the quality of field observations
and computations, with various tolerances on the loop misclosure correspond­
ing to various instrumentation and observing procedures. Misclosures in a
network of loops may be used to isolate blunders. If two neighboring loops
have large misclosures of nearly equal magnitude but opposite sign, then one
or more blunders may exist in the common segment.

The second use for leveling loops has been to serve as a basis for adjust­
ment by condition equations. The condition that the adjusted elevation
differences around each loop must sum to zero gives rise to one condition
equation for each loop. However, it may be shown that only £ = n - b + 1 of
these loops are independent, where b is the number of bench marks and n is
the number of observations between bench marks. To use loop closures as a
basis for adjustment, it is necessary to find a set of exactly independent
loops. The common practice has been to use experience and intuition, as well
as a sketch of the network, to find a satisfactory set of independent loops.
To my knowledge, there has previously been no satisfactory automatic algorithm
for finding such a set of loops. At least one algorithm for finding an
independent set of loops in a horizontal network has been published (Steeves
1978), but it is not suitable for the task at hand because it does not find a
minimal set of loops.

Host adjustments of leveling nets are now done by computer programs. Most
of these programs, including the LEVELl program used by the National Geodetic
S urvey, are based on observation equations rather than condition equations.
The problem of finding an independent set of loops for the purpose of adjust­
ment has, therefore, largely disappeared, although the use of loops for iso­
lating blunders in observations prior to adjustment remains au important
problem.

The National Geodetic S urvey has previously used network sketches to find
the loops of a net1.vork. However, this method is time-consuming, labor­
intensive, and generally creates a bottleneck in a system where most other
tasks are performed on the computer. Furthermore, a sketch does not always

adequately reflect the data at hand. The algorithm described here is designed
to replace the process of determining loops from sketches. The design
criterion for the algorithm is based on the following requirement. It should
automatically "find that set of loops which would have been found by an analyst
working with a sketch of the network." This turns out to be an impossible
task, since the decisions made by the analyst with a sketch are not precisely
defined, especially for a complicated network. Therefore, the criterion was
modified to require agreement with the loops found by the analyst with a
sketch "most of the time and especially for simple networks." This criterion
was met.

THE LOOP GENERATION ALGORITHH

The objective of this algorithm is to generate a fundamental set of loops
that are minimal or at least near minimal (defined below). The algorithm
openates on the graph associated with the leveling network and assumes:

l. Th2 length of each edge is known.
2. The graph is not disjoint.
3. The gralJh may or may not be planar.
4. The edges do not have directions associated with them.
5. The graph contains n edges and b vertices.

For a given graph, it may be possible to find many loops. Certain subsets of
loops are said to be fundamental sets if all of the possible loops in the
graph can be generated by combining (in an algebraic sense) loops from the
subset. The number of loops, t, in a fundamental set is given by

t = n - b+l.

A fundamental set is said to be minimal if the sum of the lengths of the loops
in the fundamental set is the smallest of all the possible fundamental sets.
An individual loop is said to be minimal if it cannot be decomposed into a
number of smaller loops.

The algorithm has three parts. In the first part, the graph is simplified
and some or all of the loops may be found (i.e., the second and third parts
may not be needed). The second part of the algorithm forms a spanning tree,
having the property that the sum of the lengths of its edges is minimal, and
generates an ordered list of edges that are not in the spanning tree. No
loops are found in the second part of the algorithm. The third part of the
algorithm uses the spanning tree and the list of edges to find the remaining
loops. All of the loops found in the first part are minimal while some of
the loops found in the third part may not be minimal. The first part of the
algorithm is not a necessity, but its use makes the second and third steps
computationally easier and more efficient.

2

Part 1

Second-degree vertices, spurs, and self-closing loops are removed from the
graph of the network in this part of the algorithm. Second-degree vertices
are removed because their absence greatly reduces the computational burden
of the other portions of the algorithm. This is accomplished by replacing
the series of edges by "equivalent" edges. For example, consider a set of n
vertices vI' v2 , ••• , vn• Assume that the degree of vI and vn is not 2 and
that the degree of v2 , v3, ••• , vn-l is 2 . This implies a set of edges
el, e2 , ••• , en-l connecting the vertices. These edges can be replaced by
one equivale nt edge, e' , whose le ngth is equal to the sum of the replaced
edges. This also eliminates the vertices v2 ' v3, ••• , vn-l·

Spurs are defined as edges that are incident to vertices of degree 1, which
implies that such edges cannot lie within a loop. Spurs are simply deleted
from the graph. Note that when a spur is removed, the vertex of degree 1 to
which it was incident is also removed.

Self-closing loops are defined as loops that pass through, at most, one
vertex of degree 3 or higher. Hence, no portion of a self-closing loop can
be a portion of any other loop. Therefore, self-closing loops are, by defi­
nition, minimal loops. Finding the self-closing loops here simplifies the
logic in the third part of the algorithm. Once found, they are removed from
the graph by deleting the edges in the loop. This also removes all second­
degree vertices in the loop from the graph.

These three steps (remove second-degree vertices, remove spurs, find and
remove self-closing loops) are repeated until the graph contains no second­
degree vertices, spurs, or self-closi ng loops. The repetition is required
because the removal of a spur can create a self-closing loop or a second­
degree vertex, and the removal of a self-closing loop can create a spur or a
second degree vertex.

Part 2

This part of the algorithm develops a spanning tree (breadth first) and an
ordered set of "closing edges" for the graph generated in Part 1. A closing
edge is defined as an edge that is not in the spanning tree and is incident
to a different branch of the spanning tree at each of its endpoints. In fact,
every edge that is not in the spanning tree is a closing edge.

The spanning tree will be generated such that the distance from the starting
vertex, or root, to any other vertex will be minimal. This is done by choos­
ing edges f or the tree from a list of candidate edges, each of which has a
score associated with it. The score for the candidate edge is computed as
follows: An edge becomes a candidate when one of its endpoints is added to
the spanning tree. This endpoint will be called the near end, i.e. , the end
nearest the root of the graph. The other endpoint will be called the far end.
The score for the edge is then the distance in the tree from the root to the
near end plus the length of the edge.

3

There are several preliminary steps to the algorithm. First, the starting
vertex, or root, must be chosen. The choice of the root is arbitrary. The
algorithm will need a table that gives the distance (in the tree) of all
vertices in the tree from the root. This distance for the root is set to zero,
and the distances for the other vertices are set to the -1 to indicate that
they have not yet been added to the tree. The list of candidate edges ini­
tially contains all edges incident to the root. The list of closing edges is
empty. The algorithm then proceeds as follows:

1. S elect the edge with the lowest score from the candidate list, add it
to the tree, and remove it from the candidate list.

2. S et the distance of the vertex at the far end of the edge added in
S tep 1 to the score of that edge. Call this vertex the new vertex.

3. Test each edge incident to the new vertex and not in the tree. If the
edge is in the candidate list, move it to the list of closing edges;
otherwise compute its score and move it to the candidate list. If
several closing edges are found at the new vertex, they are put into
the list of closing edges according to their score, i.e., lowest score
first.

4. If the list of candidate edges is not empty, go to S tep 1.
of candidate edges is empty, the spanning tree is complete
closing edges have been found.

Part 3

When the list
and all

This part of the algorithm uses the spanning tree and the list of closing
edges generated in Part 2 to find the remaining loops. One loop is
found for each edge in the list of closing edges. The spanning tree
will have edges added to it in this part of the algorithm. Therefore, it
will no longer be a spanning tree and will be referred to as the subgraph.

The following steps are performed for each edge in the list of closing edges,
in the order of the list of closing edges:

1. Find the shortest path in the sub graph that connects the endpoints of
the closing edge. This path and the closing edge form a loop.

2. If the path contains more than one edge, add the closing edge to the
subgraph. If the path contains only one edge, the closing edge is
parallel to the edge that forms the path and is, therefore, not added
to the graph.

The algorithm used to compute the shortest path between the endpoints of
the closing edge is similar to the algorithm used to build the spanning tree.
A. " h h II · d - s ortest pat tree 1S starte at one end of the closing edge. Each edge
in the subgraph incident to this vertex is scored and put into a list of
candidates. (The closing edge is not in the subgraph.) The algorithm then
proceeds as follows:

4

1. S elect the candidate with the lowest score and put it in the shortest
path tree.

2. If the newly selected edge is incident to the closing edge, go to S tep 4.

3. Test each edge in the subgraph incident to the far end of the newly
added edge. If the edge has already been scored, remove it from the
candidate list. (It cannot be part of the shortest path.) Otherwise,
score it and add it to the candidate list. Go to S tep 1.

4. The shortest path is found by starting at the end of the closing edge
opposite the root of the shortest path tree and then by following the
shortest path tree down to its roots.

S PECIAL CAS ES

In applying this algorithm to leveling networks, the real objective is to
generate the loops that one " sees" as minimal in a network sketch. The
algorithm will not always do this because the length of a path followed by a
leveling crew does not represent the straight line distance between bench marks.
For instance, consider the portion of a leveling network shown in figure 1.

1.0

1.0

/

c

2.0
)------------iB

2.1

1.0 1.0
0)-------1

Figure l. --A special case.

/

2.0

The numbers indicate the relative lengths of the links. The loop seen as
minimal are ABFECA and EDCE. The algorithm will find EDCE correctly, but it
will find ABFEDCA instead of ABFECA because the path EDC is shorter than EC.
This situation can occur whenever the network contains a three- sided loop in
which the sum of the lengths of two of the sides is shorter than the length of
the third side.

The algorithm may appear to fail for networks that cannot be represented by
a planar graph.

5

In figure 2, the algorithm will find the loops ABFEA, BCGFB, CDHGC, and
AEHDA plus three of the following four loops: EFGE, EGHE, EFHE, and FGHF.
This happens because the four "outer" loops, plus three of the "inner" loops,
form a fundamental set. In other words, the closure of the fourth inner loop
(i.e., the one not found by the algorithm) can be derived from the closures of
the other three inner loops.

A�--------------------------------�

Et-------------�

t-----------------i G

D �-------------------------�C

Figure 2. --A nonplanar network.

IMPLEHENTATION AND PERFORHANCE

The algorithm has been implemented as a computer program named LOOPI. The
program is written in the PL/ I language for the IBH PL/ I Optimizing Compiler
and runs under the IBM 11VS operating system. It may be run on any machine
supporting this compiler and operating system with sufficient memory. The
memory required is approximately l60K bytes plus 30K bytes for each 1, 000

bench marks in the network.

The LOOPI program is integrated into the NGS system for the processing of
leveling data. The primary input is a LEVELl input file created by the S ELECT
program, which is used to interface application programs to the permanent
vertical data base files, known as Working File and Vertical S ynoptic File.
With this input, LOOPI can automatically compute the closures of a minimal or
near minimal set of fundamental loops in the network without any instructions
froln the user. Alternatively, the user may explicitly request LOOPI to compute
the closure(s) of any loop(s) in the network. In addition, if the output file
from a LEVELl adjustment of the network is available, LOOPI will compute the
correction rates between junction points. (S ee appendix.)

6

Detailed instructions for using this program are given in the appendix.
The timing information listed in table 1 was obtained from runs made on an
IBM 3033.

Table l.--LOOPI central processing unit (CPU) usage

Vertices/
Bench marks/ edges in S elf-
observations graph after closing Other CPU time

input reduction loops loops (sec)

2542/2572 20/31 3 12 2. 98

2664/28 38 118 /206 20 8 9 6. 35

2179/248 0 255/428 9 174 24. 53

ACKNOWLEDGMENT

The author would like to thank Dr. Richard A. Snay of the National Geodetic
S urvey for suggesting the idea of using a spanning tree and an ordered set
of edges and for his helpful discussions.

BIBLIOGRAPHY

Cribb, D. W. , RingeI sen, R. D., and S hier, D. R., 198 1: On cycle bases of a
graph. Technical Report No. 362, Clemson Univers�_ty, Clemson, S .C.

Deo, Narsingh, 1974:
Computer S cience.

Graph Theory with Applications to Engineering and
Prentice-Hall, Englewood Cliffs, N.J.

Steeves, Peter A., 1978 : Economization of parametric horizontal control
adjustment via condition equations. Proceedings of the S econd International

��o_sium on Problems Related to the Redefinition of North American Geodetic
Network�, Arlington, Va., April 24-28 , pp. 535-554. National Geodetic
Information Center, Rockville, MD 208 52.

7

APPENDIX.--PROGRAM DESCRIPTION AND USER'S GUIDE

A fundamental set of loops is defined as a set whose members can be combined
to yield the closure of any loop in the network. The number of loops in a
fundamental set is equal to the number of links minus the number of junctions
plus one. A minimal loop is a loop that cannot be decomposed into a set of
shorter loops. Consider the following example:

A I-------i C I-------i E

B l--------{DI----�F

All of the links in the above network are assumed to be of the same length.
The network contains three loops: ACDBA, CEFDC, and ACEFDBA. The number of
loops in a fundamental set is

L number of links - number of junctions + 1
7 - 6 + 1 = 2.

Any two of the three loops in this network constitute a fundamental set.
However, the minimal set of fundamental loops contains ABDCA and CDFEC. Note
that these two loops can be combined to form the loop ABDFECA. Therefore,
ABDFECA is not minimal because it can be decomposed into a set of shorter
loops.

LOOPI performs several transformations on a network to simplify computation.
No changes are made to the input file. The first transformation that LOOPI
will make is the removal of multiple observations. Each set of multiple
observations is removed and replaced by a single observation. The height
difference for this new observation is the weighted mean of the height
differences of the multiple observations, and its length and variance are
equal to the respective mean values of the multiple observations. For each
set of mUltiple observations, LOOPI will list the new mean observation and
each of the multiple observations along with their deviations from the mean
height difference. Any observation that deviates from the mean by more than
the allowable deviation will be flagged. This allowable deviation, A, is
based on loop misclosure tolerances and is computed as

A = SQRT(0.5 * HAX(O.250, k) ;� TOUo'�2)

where

k = section length in kilometers,
TOL = loop misclosure tolerance in mm/SQRT(k) based on class and order.

If the section length is less than 0.25 km, then 0.25 km will be used for
this computation.

8

After LOOPI has removed any multiple observations, it will remove any spurs,
fold out second-degree marks, and remove any self-closing loops (spur loops) .
These three steps are repeated until all spurs, second-degree marks, or self­
closing loops in the network are eliminated. These three steps must be
repeated because the removal of a spur can generate a self-closing loop or a
second-degree mark, and the removal of a self-closing loop can generate a
spur or a second-degree mark. Consider the following example:

The spur observations PQ and QR will be removed. Note that this will make P
a second-degree mark. The second-degree marks E, G, J, L, N, and P would be
folded out next. The network would then look as follows:

As can be seen in the above diagram, a self-closing loop would exist at mark
H. Upon removal of this self-closing loop the link KH would become a spur.
This spur would then be removed which would cause mark K to become a second­
degree mark. Hark K would be folded out and the resulting self-closing loop
at mark H would be removed. The network would then look as follows:

9

The spur FH would then be removed. This would cause mark F to become a
second-degree mark which would in turn be folded out. The network would then
look as follows:

In this manner the original network containing 20 observations and 16 marks
would be reduced to one network containing 6 links and 4 junctions. LOOPl
would then find the remaining loops using its auto-loop algorithm. It would
list the closures for these loops and all of the self-closing loops.

The computation of the allowable misclosure for a loop is based on the order,
class, and length of each section in the loop. An allowable variance for each
section is computed as the tolerance squared times the section length. If the
section length is less than 0.25 km, 0.25 km will be used for this computa­
tion. The tolerance is a function of the order and class of the survey. The
allowable misclosure is computed as the square root of the sum of the allow­
able variances of the sections in the loop. LOOPl will flag any loop whose
misclosure exceeds the allowable misclosure.

LOOPl can compute the correction rate for each link in the network if a
LEVELl output file (i. e. , adjusted elevation file) is available. The
correction rate, C, is computed as

C = (DHA - DHO)/K

where

DHA adjusted height difference in millimeters,
DHO observed height difference in millimeters,

10

K = length of the link in kilometers.

This correction rate is the average rate for a link. Individual sections in
a link may have different correction rates because of the weighting scheme
employed in LEVELl. Under this scheme, sections having the same length but
different classes and/or orders will receive different weights in the adjust­
ment.

LIMITATIONS

LOOPl can accommodate networks containing up to 1 6,38 3 observations. This
number is also the upper limit for programs SELECT and LEVELl.

The objective of the automatic loop misclosure algorithm is to find the
misclosures the user would "see" as minimal in a network sketch. However,
LOOPl cannot always do this. Consider the following example:

1.4 1.5
�1.0-+ 3.0

1.4 1.5

The numbers in the diagram indicate the relative length of the links. It
would seem reasonable to expect that LOOPl will find the loops ABCA, ACDA,
and CBDC. However, instead of finding CBDC, it will find BDAB. This results
from LOOPl trying to find the shortest path between B and D that can be
combined with link BD to form a loop. The path BAD has a length of 2. 8
whereas the path BCD has a length of 3.0; thus LOOPl will combine BAD with CD
to form BDAB.

11

JOB SETUP

IIx9Z JOB (S4l7,CB1,1,9), 'name - bin#'
IlpROCLIB DD DS N=CNS420. S 7D. PROCLIB,DIS P=SHR
IlsTEPl EXEC LOOP1,INIT=X9Z,ACNT=s4l7,UNIT=3330,
II VOL=NGS 003,DS N='LEVEL. NET'
I IGo. S YS IN DD ,�
TITLE S AMPLE RUN
OPTIONS TIMING
LOOP ABOOOl (15) AB0003 (23) ABOOOs
LOOPX (67) ABOOOl
LOOP ABOOOS (23) (212) (llO) (7)

EXEC CARD PARAHETERS

The parameters on the EXEC card are described next. They are shown as
parameter = default followed by an explanation.

ACNT=s4l7

This paran�ter is optional. It indicates the account under which the
adjustment input file is stored.

INIT=

This parameter is required. It indicates the initials under which the
adjustment input file is stored.

UNIT=3330

This parameter is optional. It indicates the type of disk drive on
which the adjustment input file is stored.

VOL=NGS 003

This parameter is optional. It indicates the name of the disk pack on
which the adjustment input file resides.

DS N=

This parameter is required. It supplies the last portion of the data set
name of the adjustment input file. For this, the name of the adjustment
input file would be CNS4l7. X9Z.ADJIN. LEVEL. NET.

These parameters may be in any order on the EXEC card. Note that the EXEC
card in the above example could have been coded equivalently as

IlsTEPl EXEC LOOP1,INIT=X9Z,DS N='LEVEL. NET'

If a LEVELl output file exists for a network, the correction rates between
junctions can be obtained by executing LOOP1A. For example,

12

//STEPI EXEC LOOPIA, INIT=X9Z, DS N='LEVEL.NET'

The adjusted height of each junction will also be listed.

USER INPUT - FILE S YS IN

LOOPl reads only columns 1-71 (inclusive) of the cards input through this
file to make it more convenient to submit runs via SUPERWYLBUR. All of the
cards in this file are free format; i.e. , there are no specific column loca­
tions for the items on the cards (except they must be in columns 1-71). The
items or fields on each card are to be separated by one or more blanks; do not
use commas or other characters to separate fields.

Three types of cards can be input through this file, namely, TITLE, OPTIONS ,
and LOOP cards. All of these cards are optional; however, the DD card for file
S YS IN must always be included. The TITLE card is used to input a title that
will be printed as part of the heading on each page of output. Code the word
TITLE in the first field and code the title in the second field.

The OPTIONS card is used to modify the output of LOOPI. Code the word
OPTIONS in the first field followed by one or more of the options listed
below. Each option has two possible values. They are listed as default
value/optional value.

AUTO/NOAUTO

This option indicates whether or not the user wants LOOPI to generate
a set of loop misclosures automatically.

S CLOOP/NOS CLOOP

This option indicates whether or not LOOPI is to list the misclosures of
self-closing loops.

LISTCOM/NOLISTCOM

This option indicates whether or not LOOPl is to list combined observa­
tions. The observations will be combined in any case.

NOTIMING/TIMING

This option indicates whether or not LOOPI is to print a breakdown of its
CPU usage.

Any number of OPTIONS cards may be input. If any option is included more than
once, the last value found will be used.

The LOOP and LOOPX cards are used to specify additional loops for which the
user wants misclosures. Listed next are some rules for specifying loops.

13

1. The first element in the specification must be an ACRN. (An ACRN is a
code assigned by NGS to uniquely identify bench marks.)

2. If the last element in a specification is an ACRN, it must be identical
to the first ACRN.

3. The path specified must be continuous.

4. The path specified must close on itself at the starting ACRN and only at
the starting ACRN.

5. The path specified must not be ambiguous.

6. Link numbers must be enclosed in parentheses. Blanks are not allowed
inside parentheses.

There are several ways to specify the path of a loop. These will be explained
with the aid of an example.

/ABr1) (100) CABT2\
(67) (1S) (78) (73)

(212)

(23) (110)

I
ABOOOS (7) (ABOO06)

The numbers in parentheses in the network shown above are link numbers
generated by LOOP1. To request the computation of the misclosure of a loop
code a card with the word "LOOP" in the first field and code the ACRN of the
mark at which the loop starts and ends in the second field. Code the link
numbers and/or ACRNs that form the rest of the loop specification in the third
and remaining fields.

Suppose that one wants LOOPl to compute the closure of the loop ABOOOl -
AB0003 - ABOOOs - ABOOOl. The most detailed specification ,.,rould be

LOOP
LOOPX

ABOOOl
(67)

(15)
ABOOOl

AB0003 (23) ABOOOs

14

Note the LOOPX card. It is used as a continuation of the preceding LOOP card.
A LOOP card may be continued onto any number of LOOPX cards. The two cards
cited could be read as follows: S tart at mark ABOOOl and proceed via link 15
to mark AB0003, then proceed via link 23 to mark AB0005, then proceed via
link 67 to mark AB0001. As stated previously, this specification is the most
detailed. Here are some alternative specifications that are equivalent:

LOOP ABOOOl
LOOP ABOOOl
LOOP ABOOOl

(15) (23) (67)
AB0003 AB0005 ABOOOl
(15) AB0005 (67)

The above example means that the first card starts at AB0001, then proceeds
via links 15, 23, and 67, returning to AB0001. The second card starts at
AB0001, then goes to AB0003, AB0005, and returns to AB0001. The third card
starts at AB0001, proceeds via link 15 to AB0005, and returns via link 67
to AB0001.

In the rules for specifying loops, it was stated that the specification of
the path of the loop must not be ambiguous. S uch a situation can occur when
more than one link exists between two junctions. For example, consider a loop
that starts at AB0001, then goes to AB0002, then goes to AB0004, then goes to
AB0003, and then returns to AB0001. There are two links between AB0002 and
AB0004. In such a case, the user must specify which link is to be used by
including the link number (either 73 or 78 in this case) of that link.

15

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Ocean Survey

National Geodetic Survey, C18x2
Rockville, Maryland 20852

OFFICIAL BUSINESS

POSTAGE AND FEES PAID
u.S. DEPARTMENT OF COMMERCE

COM-210
THIRD CLASS MAIL

U_S_MAIL
®

