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ADJUSTMENT OF GEODETIC FIELD DATA USING 

A SEQUENTIAL METHOD * 

Marvin C. Whiting 
Allen J. Pope 

National Geodetic Survey 

National Ocean Survey, NOAA 

Rockville, Maryland 20852 

ABSTRACT. Using remote terminals, National Geodetic Survey 

(NGS) field parties are now able to carry out limited adjust­

ments for the purpose of evaluating their observations. 

Such an adjustment must be able to handle incomplete net­

works. The method adopted W3� developed by Creusen [1965]. 
It is a sequential adjustment using a modified arithmetic 

which automatically handles all problems of possible singu­

larities, giving for indeterminate parameters their pseudo­

inverse solution accompanied by appropriate flags. The 

modified arithmetic is based on the Laurent series 

I = AI£-I+A2+A3£+A4£2+ ... with £ a dummy variable. Al 
thus has infinite variance relative to A2 which has infin­

ite variance relative to A3• For a sequential adjustment 

only two terms are necessary. Al becomes a projection 

matrix and A2 a covariance matrix. Al is initially set to 

I and at each step of the sequential adjustment becomes 

I-N+N, while A2=N+. At determinacy N+ becomes N-1 and Al 
becomes zero, thus providing a flag on the determination of 

the unknowns. The main disadvantage of this method is 

large core requirements in a computer. with the residuals 

from the adjustment and their standard errors, the NGS 

field observers can immediately determine if their work 

satisfie$ first-order requirements. 

I. INTRODUCTION 

Our problem is to carry out a least-squares adjustment of obser-

vations of unknown quality, such that best estimates of unknowns 

are obtained and poor observations are automatically detected. 

Further, we do not know at any time if sufficient observations 

have been made to guarantee a unique solution for the parameters. 

*Presented at American Geophysical Union fall meeting, 
San Francisco, December 1975. 
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The problem arises as National Geodetic Survey crews observe a 

triangulation network. They need to have real time estimates, as 

well as control, of the quality of their work. Some of their ob-

servations may close triangles, but others would be part of still 

indeterminate triangles. Further, we wish to automate this whole 

evaluation process, leaving ourselves the options to remove the 

effects of poor observations from the network and to replace 

them, where necessary, with reobservations. 

One method is to have the geodetic surveyor adjust the network­

by gathering together observations until there are enough deter­

minations of the unknowns in the starting area, and then do a 

conventional batch least-squares adjustment. As more observa­

tions become available, another complete adjustment is made add-

ing the new observations in with the old. This requires contin-

ual evaluation of the data to avoid entering observations that 

would create a singular normal matrix. Also a tremendous amount 

of duplicated computation would occur. 

Another method available is a sequential adjustment. This has 

the advantage that the system does not have to be readjusted for 

each new batch of observations. However, in the conventional 

sequential adjustment an a priori covariance matrix of the para-

meters is needed which is difficult to automate. Singularities 

in part of the network can still exist which are not automati­

cally exposed in the results. 
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The method we have adopted is a sequential adjustment based on 

that developed in 1965 by Creusen. The Creusen sequential in-

eludes both the unknowns and the observations in the covariance 

matrix, and uses a modified arithmetic to handle parameters as 

"observations" with infinite variance relative to the actual ob-

served quantities. The terms for the observables are initialized 

with the estimates of the variance of the observations and the 

terms for the parameters with the identity matrix. The final 

result gives the variance of the adjusted unknowns and observa­

tions as well as all correlations between them. Thus a complete 

analysis of the system is possible. 

The advantage of this method lies in its full generality. The 

use of modified arithmetic permits the solution of any system of 

equations, whatever its rank. The pseudo inverse is produced if 

the rank is less than the number of unknowns; a unique solution 

results if they are equal, and a least-squares solution if the 

observations are redundant. Further, flags on all incompletely 

determined unknowns are provided. 

Let us begin by describing the concept of modified arithmetic 

as formulated in PODe and Hanson [1972J. It was pointed out 

that the semi-infinite formal Laurent series 
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(€ a dummy variable) can be appropriately initiali z ed and 

manipulated according to s tandard algorithms to give a series of 

matrices expres s ible in terms of generalized inverses of A2• If 

A. is appropriately chos en, all information relevant to the solu-1 

tion is carried along by the s olution proces s .  The ps eudoinvers e 

becomes the invers e on determinancy. 

In a s equential adjus tment Pope determined that only two terms 

of the s eries need be carried along. This corres ponds with the 

concept of Creus en, although Creus en does not give an explicit 

formulation of the rules for manipulating thes e two terms (the 

derivation of which requires a third term nowhere mentioned in 

Creus en). At each arithmetic operation, modified arithmetic is 

us ed to find the s um or product or quotient of thp components of 

I . This proces s is particularly s imple in the cas e of s equen-

tial adjus tments . 

A s equential leas t-s quares adjus tment is given by 

[Bjephammep� 1973J 

x - t,x 
k-l 

( 1) 

( 2)  

Here Q
k is the es timate of the covariance matrix after processing 

the kth group of obs ervations . W is the closure term and, when 

adding one new obs ervation, is a s calar as is also Q • ww 

us ing the model, 

Further, 
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BX = 0 ( 3) 

Qxw 
= 

Q
t 

= Bk Qk-l ( 4 ) wx 

and Qww Bk 
t 

( 5 ) = 

Qk-l B k 

Then the modified arithmetic sequential is initialized by 

the following choice of Q and X 
o 0 

Qo � E � [� �] ! + [� �] (6 ) 

Here, I corresponds to that part of the solution that contains 

only unknowns X. Q is the a prlori covariance matrix of the ob­
v 

servables. This, in effect, gives parameters infinite variance 

relative to the observables, and no a priori covariance matrix 

of the parameters need be introduced. V is the vector of resid-

uals on the observations. 

We do not need to get involved in a full development of the 

modified arithmetic as would be necessary in a batch solution, 

but rather can restrict ourselves to the particular operations 

which we know will occur in our sequential adjustment. The fol-

lowing equations constitute the modified arithmetic and are 

easily verified. 

1 1 1 afd + fbc (a- + b) (c- + d )  ac - acg 
E: E: 

= + if f t- O (7) 1 
(f- + g )  f E: f2 

E: 

cb + ad 1 bd 
if f 0 (8 ) + - = 

g E: g 
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This corresponds to the operation f,X = 

Q Q 
A Q = XW wx f h . 
u 

� 
0 t e sequentldl algorithm. 

Q W xw 
Qww 

and 

In each of these 

cases there are terms in (E, E2, E3) which must be considered in 

developing (7) and (8), but have no effect in the final expres-

sion and can be ignored. 

After the application of (7) and (8), and the recognition of 

terms never receiving corrections if initially zero, the final 

expressions for f,Q and f,X are: 

with 

Qxw 
= 

[RXI 

Qww 
= 

�l 

for qWl 7'" 0 [Rt 

:l R Xl VI 
f,Q = qw 

0 

f,X 

for qWl 
= 0 

RVI] 

1 + q 
-
E 

1 
+ E 

!. + [R RV2] E X2 

W2 

t [ � (R R +Rt R )+� Rt R 
I Xl X2 X

� 
xl 2 Xl Xl 

qWI 
Rt R V2 Xl 

qWl 

Rt R 1 xl v2 

qWI 

0 

( 9) 

(10 ) 

(11) 

(12) 

f,Q [: 1 X2 1 
o ] [Rt ] 
o E + Rt qw [RX2Rv2] 

-1 (13 ) 
= 

V2 2 
= 

QxwQ"";Qwx 



7 

6X = Q Q-IW 
XW xx . ( 14 ) 

Here R and R are part of the projector term (corresponding xl VI 

to AI) due to the unknowns and observables respectively, and R 
X2 

and R are the part of the real term (corresponding to A2) due 
V2 

to unknowns and observables respectively. (13) and (14 ) will be 

recognized as the standard formulas for a sequential adjustment. 

In a later paper we will show that in (11) the Al matrix or pro­

jector matrix becomes zero upon determinancy, or rather the term 

in this matrix which corresponds to each determinant unknown be-

comes zero. This provides our flag on the status of each 

unknown. 

Using a better known notation,the projector matrix is 

Q Q
t 

Q-IQ where Q is BQ . 
x - xw ww xw' xw x 

Q
x 

is initially I, then 

so on. This can be shown to be the recus-

sion for I - N+N, where N is the matrix of the normals formed 

from the observations. This is a projector onto the solution 

space. The A2 matrix in (11) is N+ , or the pseudoinverse of the 

singular normal equations. On achieving determinancy (i. e. , 

rank equal to the number of unknowns) I - N+N becomes zero and 

N+ becomes N-I, a covariance matrix. After determinancy, all 

subsequent equations that do not introduce new parameters, thus 

creating new indeterminancies, find q = 0 and use (13) and 
WI 

( 14 ) . 
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One disadvantage of this approach is the necessity of comput ­

ing the covariances between observations and unknowns as well as 

their variances. Further, as the corrections to the unknowns 

and observations are obtained simultaneously, all these correc ­

tions, with their full covariance matrix, must be in the comput ­

er at the same time. Also, the variances and covariances of the 

unknowns require double storage. In short, a large computer is 

necessary to solve a small network. 

We have chosen this method because, for the application of 

determining the accuracy of the observations, only a small part 

of the network needs to be considered, and with the new field 

terminal system being introduced at NGS a large computer be­

comes readily available. 

There are methods by which the above disadvantages can be 

greatly reduced. The unknowns and corrections to observations 

do not have to be solved for simultaneously. If the unknowns 

are solved for alone, the method reduces to a Kalman filter-type 

sequential adjustment but still with modified arithmetic to 

handle singularities. 

Another method is to introduce the concept of a local adjust­

ment [Halmos et al., 1974J. As a single equation is introduced 

into the adjustment, it is possible to determine from the size 

of the covariance term what other unknowns and observations will 

be affected, and then construct a Q matrix that only contains 

terms for these unknowns and observations. The resulting adjust­

ment will be rigorous only to some preselected degree of 
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accuracy, but very large networks can be handled one small sec-

tion at a time. 

III. IMPLEMENTATION OF THE ADJUSTMENT PROCEDURE 

For field use, two modes of adjustment will be made available. 

In one, the geodetic surveyor will designate which stations will 

be included in the adjustment. This mode has been essentially 

completed and will be available for field use in the near fu-

ture. In the second mode, a localization will be carried out to 

decide which observations and unknowns will be included in the 

adjustment. The geodetic surveyor will indicate only the gen-

eral region in which he is interested. In this mode the total 

of all the local adjustments will constitute a final adjustment 

of the entire network at the completion of a project. 

In order to eliminate the orientation unknowns, and thereby 

save space, we chose an alternative form of the basic equation 

for horizontal directions. If a designates azimuths, and t an 

observed direction, then it follows that 

£ -t = a - a = the ang le at I between 0 and 2 
12 10 12 10 
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This is the constraint equation used in the adjustment. It 

introduces two residuals in each equation. The Creusen sequen­

tial has the unique advantage of handling this general case 

without difficulty. Here w is the difference between the angle 

computed from the initial unknowns and the observed angle. The 

subscripts designate directions. vI O' thus, is the correction 

to the direction from point one to point zero. The oa have been 

expanded in terms of o�i' O�j' OAi' and OAj [Rapp, 1969J. 

The present adjustment contains an extended feature comparable­

to the extended Kalman filter [Jazwinski, 1970J where the coef­

ficients and closure terms are evaluated at the most recent up­

dated value of the unknowns. The entire adjustment is then 

iterated, removi ng the extended feature. The hope is to reduce 

the accuracy requirements for the initial approximations of the 

unknowns. Not enough trial adjustments have yet been carried 

out to determine if this hope has been realized. 

It would be impractical to use this adjustment technique to 

solve large networks. However, if small sections of a network 

must be adjusted to provide statistical control of the quality 

of the work, then a Creusen sequential adjustment with a locali­

zation feature provides an effective means of doing this. 
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