Computing unambiguous Total Electron Content and ionosphere delays using only carrier phase data from NOAA's CORS network

Dru A. Smith, Ph.D. National Geodetic Survey National Oceanic and Atmospheric Administration

Topics of Discussion

- Geodetic need for ionosphere delays
- CORS network
- Assumptions and model
- Equations and implications
- Initial tests
- Full day solution
- Future directions

Geodetic need for ionosphere delays

- Dependent on
 - Absolute positioning versus single, double or triple differencing
 - -1, 2 (or 3) frequencies
- Solving for absolute (unambiguous) ionosphere delays for single frequency users solves all other geodetic positioning ionosphere needs

- *Currently 400+ 24/7 receivers*
 - Dual frequency, carrier-phase
 - Multi-agency
 - Administered by NGS
 - All 50 states, Central America, others
 - Ideally suited to serve as an ionosphere monitoring network for geodetic applications in the USA

CORS Coverage - April 2004

Symbol color denotes sampling rates: (1 sec) (5 sec) (10 sec) (15 sec) (30 sec) Graio 4/15/2004

Assumptions and model

- 2-D "condensed" TEC shell
- Pros
 - Simplified equations, well known model
- Cons
 - Overly simple, far from true 3-D ionosphere
- Seen as a reasonable *first* step in a long range *geodetic* research strategy

Pierce Points and Tracks

- A <u>pierce point</u> occurs at ionosphere shell for each data epoch
- Mapping pierce points without loss of lock yields a <u>track</u>
- CORS yields about 20,000 tracks every day

TECS and TECR

- TECS is the TEC value seen in the satellitereceiver direction
- TECR is the vertical TEC value at the shell
 TECS = TECR / cos z'
 - Questionable usefulness at low elevation angles

$${}^{i}R_{k} = b_{k} + {}^{i}r + c({}^{i}\delta t) + {}^{i}T + {}^{i}I_{k}(+{}^{i}m_{k}) = \lambda_{k}{}^{i}\Phi_{k}^{\text{RINEX}} \quad \text{(biased range, m, epoch "i", freq "k")}$$

$$I_{k} = -\frac{40.3}{f_{k}^{2}}TECS \quad \text{(m)}$$

$$\therefore \quad \lambda_{1}{}^{i}\Phi_{1}^{\text{RINEX}} - \lambda_{2}{}^{i}\Phi_{2}^{\text{RINEX}} = (b_{1} - b_{2}) + ({}^{i}I_{1} - {}^{i}I_{2})$$

$$\therefore \quad {}^{i}TECS = \left(\frac{1}{40.3}\right) \left(\frac{1}{f_{1}^{2}} - \frac{1}{f_{2}^{2}}\right)^{-1} \left[\lambda_{1}{}^{i}\Phi_{1}^{\text{RINEX}} - \lambda_{2}{}^{i}\Phi_{2}^{\text{RINEX}}\right]$$

$$- \left(\frac{1}{40.3}\right) \left(\frac{1}{f_{1}^{2}} - \frac{1}{f_{2}^{2}}\right)^{-1} (b_{1} - b_{2})$$

 \therefore $^{i,j}\Delta TECS = ^{j}TECS - ^{i}TECS$

$$= \left(\frac{1}{40.3}\right) \left(\frac{1}{f_1^2} - \frac{1}{f_2^2}\right)^{-1} \left(\lambda_1^{i,j} \Delta \Phi_1^{\text{RINEX}} - \lambda_2^{i,j} \Delta \Phi_2^{\text{RINEX}}\right)$$

Smith, D.A., Ionosphere from CORS, PLANS 2004

Equations

Implications of Equations

- Knowing ΔTECS:
 - Shape of "TECS vs time" curve known
 - Absolute level unknown
- Single, unknown bias per "track"

${}^{i}TECS = {}^{i}TECR / \cos^{i}z'$ ${}^{i,j}\Delta TECR = {}^{j}TECR - {}^{i}TECR$ $\therefore {}^{i,j}\Delta TECR = {}^{i,j}\Delta TECS \cos^{j}z' + {}^{i}TECS(\cos^{j}z' - \cos^{i}z')$

Smith, D.A., Ionosphere from CORS, PLANS 2004

- Epoch-dependent cos z' in TECR:
 - Shape of "TECR vs time" curve is *unknown*
 - Absolute level unknown

Solving for biases

- Solve:
 - 1 TECS bias per track
- Yields:
 - Known TECS values
 - And thus known TECR values
- How? Modifying an old lesson from altimetry...

- Consider two tracks that pierce the ionosphere at the same place, at the same time
 - TECS(ϕ , λ ,t,track a) \neq TECS(ϕ , λ ,t,track b)
 - TECR(ϕ , λ ,t,track a) = TECR(ϕ , λ ,t,track b)
- Known:
 - $-\Delta TECS$ on all tracks
 - TECR equality at crossovers

Using Crossov

- By itself, one crossover has:
 - 1 condition (TECR equality)
 - 2 unknowns (TECS biases for 2 tracks)
 - Thus, unsolvable as is
- Need conditions \geq unknowns
- Closed polygons is the solution

- 3 Tracks
- Crossovers A,B,C

occur in sequential

Order

- -Not as rare as
- it looks

Closed Polyg

- Altimetry or Leveling (ΔH & H-equality):
 # conditions = # vertices 1
- Ionosphere (ΔTECS & TECR-equality)
 # conditions = # vertices
- Any time that a closed polygon is formed on the ionosphere "shell" we have:
 - # Conditions = # Unknowns

Polygon Crossover Equations

$$\begin{bmatrix} {}^{A}_{1}\Delta TECS & \cos {}^{A}_{1}z' - {}^{A}_{3}\Delta TECS & \cos {}^{A}_{3}z' \\ {}^{B}_{1}\Delta TECS & \cos {}^{B}_{1}z' - {}^{B}_{2}\Delta TECS & \cos {}^{B}_{2}z' \\ {}^{C}_{2}\Delta TECS & \cos {}^{C}_{2}z' - {}^{C}_{3}\Delta TECS & \cos {}^{C}_{3}z' \end{bmatrix}$$
$$= \begin{bmatrix} -\cos {}^{A}_{1}z' & 0 & +\cos {}^{A}_{3}z' \\ -\cos {}^{B}_{1}z' & +\cos {}^{B}_{2}z' & 0 \\ 0 & -\cos {}^{C}_{2}z' & +\cos {}^{C}_{3}z' \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

Smith, D.A., Ionosphere from CORS, PLANS 2004

Polygon Crossover Equations

- The existence of the cos z' values on the RHS allows for matrix inversion
 - (as opposed to +1,0 and -1 for altimetry)
- Solvability
- Can we have redundancy?

– YES

- Form small (10-12 track) "tracknets"
 - Built around double-differencing
 - -2 CORS + 2 SV = 4 base tracks
- With/without closed polygons
 - If without polygons, use pseudo-range fitting
 - If with polygons, test with/without p-r fitting
- Test against NGS double-difference positioning software ionosphere estimates

- Parameters:
 - Shell height = 300 km
 - Crossover definition: $0.1^{\circ} \ge 0.1^{\circ} \ge 1$ min
 - Cut-off angle: 10° (for data and crossovers)

Initial Tests (all contain the 4 base tracks)

- <u>Solution 1</u> (smallest tracknet possible containing the 4 base tracks)
 - 8 tracks, No polygons, PR-fit 6 of 8 tracks
- <u>Solution 2</u>
 - 10 tracks, 2 polygons, PR-fit 7 of 10 tracks
- Solution 3
 - 10 tracks, 2 polygons, no PR-fitting
- <u>Solution 4</u>

- 10 tracks, 2 polygons, PR-fit 1 of 10 tracks

Formal σ_{bias} estimates for first tracknet tests (in TECU)

Track #	Soln 1 (PR fit to 6 of 8; no polygons)	Soln 2 (PR fit to 7 of 10; 2 polygons)	Soln 3 (No PR fit; 2 polygons)	Soln 4 (PR-fit to 1 of 10; 2 polygons)
4300 (base)	3.5	2.9	0.1	1.2
4303 (base)	8.8	4.7	0.2	2.1
9484 (base)	9.3	4.6	0.2	2.0
9487 (base)	9.4	3.1	0.1	1.3
2253	13.6	5.9	0.3	2.5
10146	9.7	3.3	0.1	1.4
11416	6.5	4.9	0.2	2.0
12565	6.1	3.9	0.2	1.6
2224	-	4.3	0.2	1.7
11580	-	3.0	0.1	1.2

Smith, D.A., Ionosphere from CORS, PLANS 2004

First tracknet tests

- Pseudo-range fitting tends to bias the tracknet
- Better fit to Double Difference estimated ionosphere by using just polygons and no P-R fitting

Full day solution

- After doing multiple small tracknets to prove the method, a full day was attempted
- Day 193 (July 12) of 2002
- 307 CORS stations
- 16,896 Crossovers (conditions)
- 8298 Tracks (unknowns)

- Unzip/read hundreds of RINEX.gz files
 4 hours
- Clean 11 Million data pts (cycle slips, etc)
 1 hour
- Solve 8298 x 16896 sparse linear system
 - 30 seconds to get 8298 biases
 - 10 minutes to get σ_{bias}

Full day solution (cont)

Post Fit Crossover stats (TECUs)
 -0.004 ± 0.51 (Min -3.7; Max +4.0)

- A-posteriori σ_{bias} estimates: - Ave(σ_{bias}) = ± 1.1 TECU (Min 0.22, Max 10.7)
- Tracks were gridded and animated

Full day solution Animations

- Animation without tracks
 - <u>gif</u>
 - <u>avi</u>
- Animation with tracks
 - <u>gif</u>
 - <u>avi</u>

TECUs

Full day solution (cont)

- Average a-posteriori σ_{bias} of ±1.1 TECU reasonable, but larger than hoped for
- Sub-TECU crossover residuals show tight "locking" or consistency of tracknet
- Overall noise in grids needs improvement
- General conclusion:

- "Promising" but not by any means "done"

Summary and Conclusions

- With certain assumptions, a model for the ionosphere can be computed as an entire network
 - to ~1 TECU (absolute), *subject to biases*
 - to ~0.01 TECU agreement to Double
 Difference estimates, subject to cycle-slip fixing

Summary and Conclusions (cont)

- Further sensitivity studies:
 - Removing near-horizon crossovers
 - Shell height
 - CORS thinning
- Independent tests forthcoming:
 - Against other ionosphere models
 - In ambiguity resolving software

Contact Information

- Dr. Dru A. Smith
- 301-713-3202 x 149
- Fax: 301-713-4172
- Dru.Smith@noaa.gov

Questions?

Smith, D.A., Ionosphere from CORS, PLANS 2004

Smith, D.A., Ionosphere from CORS, PLANS 2004

