

# **ITRF2005 residuals and co-location tie issues**

- Some features of ITRF2005 residuals
- ITRF2005 vs IGS05 in regional analysis ?
- Discontinuities
- Assessment of tie errors & impact on ITRF



<u>Zuheir Altamimi</u> IGN, France



Contribution from J. Ray, C. Bruyninx, J. Legrand, A. Kenyeres



#### Some Geophysical Events May Also Occur

UP (mm)

UP (mm)

UP (mm)

10

-10

20

10

-10

20

10

-10

20

10

-10

-20

1998

ZIMM °

WTZR °

- e.g., central Europe in winter 2003 POTS o
- might also occur at **BOR1, MATE, others**
- not at ONSA ٠
- mount types are ٠ distinct
  - POTS, WZTR: GRAZ ° antennas over pillars
  - GRAZ: 2-m steel pyramid
  - ZIMM: 9-m mast
- or a different ٠ technique error ?

#### Ray et al., 2005



UP (mm)

1999

2001

2002

2003

2004

2005

2000

## **Residual behaviour IGS vs EPN**

#### **ITRF2005** results



## **Residual behaviour IGS vs EPN**

#### **ITRF2005** results

#### **EPN Analysis results**



STRING\_DEF





CATREF combins



**GS** Workshop, Miami, June 2008



## **Differences ITRF2005-IGS05**

## **Extraction of EPN stations**



Bruyninx, 2006

# Example of an EPN cumulative solution

Differences when using IGS05 or ITRF2005 RF stations

If relative PCV: Use ITRF2005

If absolute PCV: Use IGS05, but if a user wants to be in ITRF2005, what to do ?





## **ITRF2005-IGS05 differences**





# Local ties in co-location sites

# How to deal with GPS discontinuities in co-location sites ?





## Threats: ITRF on "shaky ground": current co-locations





Workshop, Miami, June 2008

![](_page_10_Picture_0.jpeg)

Local ties at GPS co-location sites Ex. GPS – VLBI ties

- Tie = GPS-to-VLBI-external-ref-pts + VLBI-internal-ecc + GPS-internal-ecc
- Take into account
  - GPS discontinuities
  - VLBI & GPS phase centers to physical points
  - VLBI antenna deformation
  - GPS PCV
- Total tie error budget probably no better than 3-4 mm per component

# **Statistics for discontinuities at IGS sites (ITRF2005)**

| <b>RMS over</b> | 74 sites where there should |
|-----------------|-----------------------------|
| not be any      | position change             |

| Number of IGS sites: | 258 |
|----------------------|-----|
| Number of stations:  | 303 |
| Number of breaks:    | 197 |

| Stats over | dX  | dY  | dZ   |
|------------|-----|-----|------|
| 74 sites   | mm  | mm  | mm   |
|            |     |     |      |
| Means      | 3.0 | 3.3 | 3.95 |
|            |     |     |      |
| Medians    | 2.1 | 2.2 | 3.35 |

Assuming total tie error = 4 mm

- ==> 16 minimum well distributed co-location sites are needed for 1mm global frame tie
- ==> ideally 32 sites for redundancy and reliability

![](_page_12_Picture_0.jpeg)

## **ITRF2005-Like Combination: Datum Definition**

| Technique | Origin | Scale | Orientation |
|-----------|--------|-------|-------------|
| GPS       | Free   | Free  | Fixed       |
| SLR       | Fixed  | Free  | Free        |
| VLBI      | Free   | Fixed | Free        |

# Local Ties Usage in ITRF Combinations

- Local Ties in ITRF2005
  - ~45% of ties are in SINEX with known measurement epoch
  - Others are with unknown variance

$$\sigma_{\text{computed}} = \sqrt{\sigma_1^2 + \sigma_2^2}, \qquad \sigma_1 = 3\text{mm}$$

$$\sigma_2 = 10^{-6} \times \sqrt{(\Delta x_s^{i,j})^2 + (\Delta y_s^{i,j})^2 + (\Delta z_s^{i,j})^2}$$

- Local Ties used in this study
  - Tie vectors as observations with appropriate weighting
  - 22 GPS-SLR vectors
  - 29 GPS-VLBI vectors
  - ==> SLR & VLBI are tied mainly via GPS

![](_page_14_Picture_0.jpeg)

# **Tie Residuals**

![](_page_14_Figure_2.jpeg)

![](_page_15_Picture_0.jpeg)

# Conclusions

- Significant differences when using IGS05 vs ITRF2005 in regional analysis, esp. in UP component
- The IGS05 is the best we can do for the interim period
- Should we recommend regional analysis to include global RF stations in their analysis ?
- Reprocessing is obviously needed
- Local tie errors on ITRF are mitigated via appropriate weighting
- Local tie typical error is about 4 mm per component
- For 1 mm global frame tie need minimum 16 well distributed colocations, probably 32 for redundancy & reliability
- Current quality of local ties : 4 5 mm (RMS analysis), ignoring dubious ties.
- 15-20 % of available ties are dubious