ESOC Real Time Network

ESOC’s GNSS Real Time Network includes a number of Symban stations at Tahiti, Kourou, Molikini, Mequinenza, Villalba, Kiruna, Perth and New South Wales. New South Wales is connected via a fibre optic link to a local station operated by CSIRO. RETINA is implemented and operational at all of these stations and includes a number of additional facilities. RETINA software and interfaces are written in C++, Java and FORTRAN.

The RETINA subsystems belong to one of three functional categories:

- **Infrastructure**: The main components are C++ applications and middleware elements for GNSS Real Time and Batch processing. The software is also used for testing and validation purposes.
- **Functionality**: The RETINA applications for GNSS Real Time and Batch processing have been developed to meet the needs of different GNSS users. The applications are designed to be flexible and scalable, allowing for easy integration into different environments.
- **Visualization**: The RETINA graphical user interfaces (GUIs) are designed to provide a user-friendly interface for monitoring and controlling the RETINA system. The GUIs are also used for data visualization and analysis.

The RETINA subsystems belong to one of three functional categories:

Infrastructure: The main components are C++ applications and middleware elements for GNSS Real Time and Batch processing. The software is also used for testing and validation purposes.

Functionality: The RETINA applications for GNSS Real Time and Batch processing have been developed to meet the needs of different GNSS users. The applications are designed to be flexible and scalable, allowing for easy integration into different environments.

Visualization: The RETINA graphical user interfaces (GUIs) are designed to provide a user-friendly interface for monitoring and controlling the RETINA system. The GUIs are also used for data visualization and analysis.

The RETINA subsystems belong to one of three functional categories:

Infrastructure: The main components are C++ applications and middleware elements for GNSS Real Time and Batch processing. The software is also used for testing and validation purposes.

Functionality: The RETINA applications for GNSS Real Time and Batch processing have been developed to meet the needs of different GNSS users. The applications are designed to be flexible and scalable, allowing for easy integration into different environments.

Visualization: The RETINA graphical user interfaces (GUIs) are designed to provide a user-friendly interface for monitoring and controlling the RETINA system. The GUIs are also used for data visualization and analysis.

The RETINA subsystems belong to one of three functional categories:

Infrastructure: The main components are C++ applications and middleware elements for GNSS Real Time and Batch processing. The software is also used for testing and validation purposes.

Functionality: The RETINA applications for GNSS Real Time and Batch processing have been developed to meet the needs of different GNSS users. The applications are designed to be flexible and scalable, allowing for easy integration into different environments.

Visualization: The RETINA graphical user interfaces (GUIs) are designed to provide a user-friendly interface for monitoring and controlling the RETINA system. The GUIs are also used for data visualization and analysis.

The RETINA subsystems belong to one of three functional categories:

Infrastructure: The main components are C++ applications and middleware elements for GNSS Real Time and Batch processing. The software is also used for testing and validation purposes.

Functionality: The RETINA applications for GNSS Real Time and Batch processing have been developed to meet the needs of different GNSS users. The applications are designed to be flexible and scalable, allowing for easy integration into different environments.

Visualization: The RETINA graphical user interfaces (GUIs) are designed to provide a user-friendly interface for monitoring and controlling the RETINA system. The GUIs are also used for data visualization and analysis.

The RETINA subsystems belong to one of three functional categories:

Infrastructure: The main components are C++ applications and middleware elements for GNSS Real Time and Batch processing. The software is also used for testing and validation purposes.

Functionality: The RETINA applications for GNSS Real Time and Batch processing have been developed to meet the needs of different GNSS users. The applications are designed to be flexible and scalable, allowing for easy integration into different environments.

Visualization: The RETINA graphical user interfaces (GUIs) are designed to provide a user-friendly interface for monitoring and controlling the RETINA system. The GUIs are also used for data visualization and analysis.

The RETINA subsystems belong to one of three functional categories:

Infrastructure: The main components are C++ applications and middleware elements for GNSS Real Time and Batch processing. The software is also used for testing and validation purposes.

Functionality: The RETINA applications for GNSS Real Time and Batch processing have been developed to meet the needs of different GNSS users. The applications are designed to be flexible and scalable, allowing for easy integration into different environments.

Visualization: The RETINA graphical user interfaces (GUIs) are designed to provide a user-friendly interface for monitoring and controlling the RETINA system. The GUIs are also used for data visualization and analysis.

The RETINA subsystems belong to one of three functional categories:

Infrastructure: The main components are C++ applications and middleware elements for GNSS Real Time and Batch processing. The software is also used for testing and validation purposes.

Functionality: The RETINA applications for GNSS Real Time and Batch processing have been developed to meet the needs of different GNSS users. The applications are designed to be flexible and scalable, allowing for easy integration into different environments.

Visualization: The RETINA graphical user interfaces (GUIs) are designed to provide a user-friendly interface for monitoring and controlling the RETINA system. The GUIs are also used for data visualization and analysis.

The RETINA subsystems belong to one of three functional categories:

Infrastructure: The main components are C++ applications and middleware elements for GNSS Real Time and Batch processing. The software is also used for testing and validation purposes.

Functionality: The RETINA applications for GNSS Real Time and Batch processing have been developed to meet the needs of different GNSS users. The applications are designed to be flexible and scalable, allowing for easy integration into different environments.

Visualization: The RETINA graphical user interfaces (GUIs) are designed to provide a user-friendly interface for monitoring and controlling the RETINA system. The GUIs are also used for data visualization and analysis.

The RETINA subsystems belong to one of three functional categories:

Infrastructure: The main components are C++ applications and middleware elements for GNSS Real Time and Batch processing. The software is also used for testing and validation purposes.

Functionality: The RETINA applications for GNSS Real Time and Batch processing have been developed to meet the needs of different GNSS users. The applications are designed to be flexible and scalable, allowing for easy integration into different environments.

Visualization: The RETINA graphical user interfaces (GUIs) are designed to provide a user-friendly interface for monitoring and controlling the RETINA system. The GUIs are also used for data visualization and analysis.