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Summary. An often neglected but important role is played by differential
scale changes in transforming geodetic datums. A rigorous account of scale
variations in any transformation involving reference ellipsoids and its effects
on geodetic heights is essential. This role provides a plausible explanation for
the reported z-shift between the Doppler defined terrestrial systems and the
satellite laser ranging frames.
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1 Introduction

The repercussions of small differential changes in scale on transforming Cartesian and
curvilinear geodetic coordinate systems were briefly discussed in Soler (1976). Pitfalls to be
avoided when scale is determined through least-squares adjustments by constraining indepen-
dently derived baseline lengths were also covered earlier in Leick & van Gelder (1975).
Nevertheless, a detailed treatment of the role of scale in geodetic transformation problems
seems necessary.

Considering the importance of this topic in relation to the definition and transformation
of world and geodetic datums coupled with the expected benefits to be derived by new
precise technology and methods such as very long baseline interferometry (VLBI), satellite
laser ranging (SLR) and global positioning system (GPS), the necessity of a careful account
of appropriate differential scale changes in every coordinate transformation will be stressed.
In particular, the consequences of neglecting a rigorous scale correction will be invoked to
explain the reported z-shift between the Doppler and SLR coordinate systems.

Although referenced on many occasions, the advantages of the so-called ‘Molodenskii
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equations’ (Molodenskii, Eremeev & Yurkina 1960, p. 14) are occasionally misinterpreted.
These equations considered only apparent changes in geodetic-network scale due to differen-
tial changes in the semimajor axis of the reference ellipsoid. The possible variations in the
curvilinear geodetic coordinates as a consequence of a global or space scale change, that is,
changes in scale along the axes of the original Cartesian geodetic system, were not treated or
mentioned by the Soviet investigators. It was only after observations to artificial near-Earth
satellites became available that small differences in scale between conventional datums and/
or other global Cartesian systems were detected. A substantial amount of literature was
preduced at that time covering all types of comparisons between differently realized
coordinate systems. As a representative sample, first credit should go to Wolf (1963) for
implementing the mathematical concept of 3-D (seven parameters) similarity transform-
ations. On this point see also Veis (1960) and Burfa (1966) where transformations involving
only shifts and rotations were discussed. Theory was followed by appropriate development
of software and actual applications using observed satellite data (e.g. Lambeck 1969; Kumar
1972; Mueller et al. 1973) and continued with a series of references covering the subject
thoroughly documented in volumes such as Williams & Henriksen (1977), Bomford (1980)
and the Proceedings of the First, Second and Third International Symposia on Satellite
Doppler Positioning (Proceedings, 1976, 1979, 1982). It appears that some of the transform-
ations treated in these references may not have been performed rigorously. Often the
transformation equations are not given explicitly, so hampering detailed comparison.

When transformations between Cartesian and curvilinear geodetic coordinate systems are
involved, it is general practice to neglect the contribution that differential changes in scale
may have in the redefinition of the ellipsoidal reference surface. This simplification, as will
be seen, corrupts the values of the resulting geodetic coordinates, and significant errors based
on today’s standards of accuracy are introduced in the heights. To clarify these points, the
general differential transformation equations will be reviewed first, It principally will
establish the basic theoretical framework to be used throughout this paper.

2 General differential transformation equations

Thougﬁ partially given in some geodetic references, (e.g. Molodenskii er al. 1960, p. 14;
Hotine 1969, chapter 27; Rapp 1975), the complete non-iterative differential formulas
expressing changes in curvilinear geodetic coordinates (dA, d¢, dh) as a function of
differential shifts, rotations, scale and variations (to the second order) in the semimajor
axis and flattening of the reference ellipsoid may be written using matrix notation after
Soler (1976) as

(N + h) cos pdr du du
M+ h)do =R | {dv + {dv , 2.1
dh aw 7 par dw 6a,0f
where
—sin A cos A 0
R=R;(Yym— ¢)Rs(\+*,m)=| —singcosA —singsinA cos¢ 2.2)

cOs ¢ Cos A\ cos ¢ sin A sin ¢
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and

du Ax 0 Sw —8y] (u u

dv . =yAy + |-6w O de v | +8sjv 2.3)
dwly 0 \Az 8y —8e 0 w w

du

d D] {6“} y (a [D] 54+ - (D] 6f) {5"} 2.4)
v = — — a+— .

s " \oa af 5f
dw 8a,8f
with

du/da  Bdu/of
[D] =|dv/da ov/of |. 2.5)
ow/da ow/of.

Values of the first and second partial derivatives of the Cartesian geodetic coordinates with
respect to the ellipsoidal parameters (g, f) in (2.4) are given explicitly in the appendix.

Equations (2.3) and (2.4) are consistent with a transformation from an initial (0ld) geo-
detic datum D1 to a final (new) one D2, also denoted symbolically by the convention
D2-D1 or the mapping D1-D2. The following nomenclature and signs apply to the
differential parameters involved in the transformation

Ax, Ay, Az = Coordinates of the origin of the Cartesian system (u, v, w) of datum D1 along
the frame (x, y, z) of datum D2.

de, 8y, 8w = Differential rotations respectively around the axes (u, v, w) of datum D1 to
establish parallelism with respect to datum D2. Counter-clockwise rotations
as viewed away from the origin are considered positive.

s = (sp2 — Sp1)/sp;- Differential scale change. s denotes the scale known in both
datums,

da = ap, — ap; . Change in semimajor axis. See (2.6) below.

of = fp2 —fp;- Change mn flattening.

8a = 84 +ap8s=apy — (1 — 8s)ap,. Total change in semimajor axis when a
differential scale change §s is also involved. (2.6)

The standard notation appiies for the rest of the quantities in equations (2.1) through (2.3),
namely

N =a/W, the principal radius of curvature in the plane of the prime vertical.
M =a(1 — e*)/W?, the principal radius of curvature in the plane of the meridian,
W= (1 — 2 sin? ¢)V/?,

u (N + h) cos ¢ cos A
UV =AMV +h)cos@sin A
w [N(1 —€*) + h] sin ¢
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Observe that in essense the basic equation (2.1) contains, because of (2.3) and (2.4),
what may be considered two different types of scale changes: a global or space scale change
represented by 8s which primarily affects the unit of length along the three Cartesian axes
and an’apparent geodetic network scale change influenced by 5a. Both changes are possible
and compatible. If we know 82 and §s, they can and should be included simultaneously in
deterministic equations of the type presented above by redefining the total change in semi-
major axis according to equation (2.6). This very point has not been addressed very often,
although it may be occasionally of critical importance. It should be emphasized here that a
change of 8s will not physically modify the size of the reference ellipsoid although the actual
magnitude of the semimajor axis will be different because the new basic ‘measuring yard-
stick® has a different unit of length,

On the contrary, a change 62 will leave the scale of 3-D space intact, but the physical size
of the ellipsoid defining the datum in question will be modified. Consequently any geodetic
quantity related to points on the ellipsoid (ellipsoidal chord distances, geodesics, normal
sections, geodetic heights, undulations, etc.) will change in magnitude although the unit of
length in which they were measured, that is the scale, remains the same before and after the
change of semimajor axis is implemented. Nevertheless, notice that spatial distances between
points not on the ellipsoid or physical parameters independent of the reference ellipsoid
such as orthometric heights H will remain invariant. Thus, it may be concluded that a 8a
change is equivalent to an apparent datum or network scale change although the scale of the
space remains constant,

In order to properly understand the differences between the two scaling methods, the
specific contribution of each to geodetic heights will be studied in detail in the next section.

3 Comparison of scaling methods and their effects on geodetic heights

From equation (2.1) after neglecting second-order terms and higher of differential
quantities, it easily follows that

dh = cos ¢ cos NAX + cos ¢ sin NAY + sin pAz

a(l—f)

+ Ne? sin ¢ cos ¢ (cos A8y — sin A§¢€) + (aW + h)bs — Woa + sin? ¢8f.  (3.1)

Assume that the only parameter involved in the differential transformation between two
hypothetical datums is a change in the units of length along the coordinate axes of the first
datum, or equivalently, a change §s in the scale of the 3-D space. Then, after substituting in
equation (3.1) the values

Ax=Ay=Az=8e=8y=6w=8a=58f=0 (3.2)

and making use of (2.6) it is finally concluded, as expected, that the differential change in
geodetic height is equal to the original height multiplied by the assumed differential scale
factor, that is

dh = (aW + h)ds — Woa = (aW + h)ds — W(8a + abs) = h8s (82 =0). (3.3)

Consequently, when the scale of the space is changed by &s, every length is multiplied by the
total factor 1+ &s. As mentioned in Soler (1976) the correction dh = hbs is very small, a few
centimetres for the extreme case of heights of about S km when &s = 6 ppm. However, the
variation in geodetic (or ellipsoidal) height is significant if we neglect the contribution of
global scale-factor changes such as s (presently accurately determined through space geo-
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Table 1. Errors introduced on geodetic latitude and heights when the
contributions to the semimajor axis as a consequence of a change in scale &s is
neglected.

d4s = 1 ppm
(Ax = Ay = Az = 8¢ = 64 = 6 = a = 6f = 0 )

de_ = ~{NeZsin#cose/(M+h)10f }és dh, = (aW/10€)4s
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| +20° +1 cm I 638 cm

| +45° +2 em ] 637 cm

| +70° *1 cm l 636 cm

| 90° 0 cm | 636 cm

| |

Note.-~ If for example: 6s = -.827ppm, then dhn(145°) = -.827x637cm = -5.27m

detic techniques) to the original value of the reference ellipsoid semimajor axis. Moreover,
its omission will cause a bias in the heights. The size of this systematic effect is easily com-
puted using the equations just presented. If the contribution of 8s to the semimajor axis is
ignored, then from (2.6) we have 8z = O (still assuming 84 = O to simplify the reasoning) and
equation (3.3) reduces to

dh, = aWss + hSs, (3.4)

where the subscript e stands for ‘error’ introduced when the original value of the semimajor
axis 4 is not modified as a consequence of the scale change 8s.

Since hds is practically negligible, Table 1 presents the linear errors affecting the geodetic
latitudes d¢ and heights dh, =aW6s when 6s=1ppm. These biases are in practice
independent of the value of the selected reference ellipsoid semimajor axis and only change
slightly (a few centimetres) with latitude. Due to the rotational property of the reference
ellipsoid , a change of §s will not affect the longitude. Notice that a significant bias is added
to the geodetic height system when the contribution a8s to the semimajor axis of the ellipsoid

is ignored.

As we will see next the inclusion of Ar in the often referenced equation
dhg = a sin®> ¢5f — 8a + Ar, (3.5)
where

Ar=—527 m=dh,(x45°),

introduced by Seppelin (1974a) {due to space limitations this equation is missing from the
final published version of the proceedings, consult Seppelin (1974b)] was probably
determined empirically. Similar types of equations were later advocated by Anderle (1976a,
b). Notice that equation (3.5) is a simplified version of (3.1) besides including the
assumptions Ax = Ay =Az=6e =8y =0.

Imagine a set of Cartesian coordinates (x, y, z) and a differential change &8s of the scale of
space. Then, when transforming into curvilinear geodetic coordinates the value of the
ellipsoidal semimajor axis must be incremented by the amount 84 = a8s; otherwise erroneous
answers will result. Remember, that in this circumstance the actual physical size of the
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ellipsoid remains unaltered! To clarify this point refer to the schematic flow diagram of
Fig. 1. By comparing the Doppler satellite systems NWLSD and WGS72 it was determined
that small changes in scale and a rotation around the third axis in the sense shown in the
figure were required to transform NWL9D - WGS72. Therefore the Cartesian coordinates
of the WGS72 system are obtained from the NWL9D through the application of a rotation
5w and the scale factor 8s. Because the original NWL9ID Cartesian coordinates are assumed
to define a priori the ‘true’ (‘best’) metric space (i.e. its scale), an inverse transformation
from, (X, ¥, Z)x\wLop to curvilinear geodetic coordinates (X, ¢, A)NwLop using the para-
meters (¢, H)NwLop can be implemented without any further consideration.

On the other hand, the transformation from rectangular to curvilinear WGS72 co-
ordinates using (g, iwgs72 requires a correction of the adopted reference semimajor axis
awgs72 by the amount 8a = awgs728s because the semimajor axis of the WGS72 ellipsoid
is now measured with the yardstick defined by the true metric space. Valid answers as shown
in Fig. 1 are obtained only when this precaution is taken. Seppelin (1974a) probably
performed this transformation using the original aw gs72. thus he was forced to change the
heights by Ar=—527 m when transforming from (A, ¢, H)nwrsp to (A, ¢ Pwgs72 in
order to arrive at the same results independently of the path followed. Unfortunately, in
this instance, the intermediary step, that is the computed values of the geodetic coordinates
(¢, Wwgs72. are incorrect. Incidentally, because 8a in the particular case of transforming
curvilinear coordinates from NWLID to WGS72 is equal to —10m, the total combined
effect introduced on the heights is actually —Wéa + aWds = 4.73 m (see Fig. 1). The value of
8a naturally will depend on the adopted semimajor axes of the two datums. Thus, ellipsoidal
heights which as discussed above should have practically no change, are increased by the
amount Ar(=aW8s) only because the correction to the semimajor axis of the reference
ellipsoid due to differential scale variation was not taken into account when transforming
Cartesian WGS72 into curvilinear geodetic coordinates. Nevertheless, although the inter-
mediate computed values of the curvilinear coordinates (X, ¢, Mwgs72 and
(\. ¢ ANnwr1oF are biased and therefore wrong, the final rectangular coordinates
(%, ¥, Z)wgs72 obtained from (A, ¢, h) using the unscaled semimajor axes are correct. To get
an unbiased answer when transforming between curvilinear and rectangular coordinates (or
vice versa), the parameters (a+ ads, wcs72 should have been used because of the
differential scale change 8s between the assumed ‘true’ system and the WGS72.

In the following section the direct consequence of these biases on the heights will be
explored to possibly explain the detected z-shift between the WGS72 and SLR reference
frames.

4 The z-shift of the Doppler-derived satellite system

As remarked previously, the (erroneous) correction dh is nearly constant irrespective of
the geodetic latitude (it never changes by more than 1 cm). Hence, a unique systematic
error of —527 m affecting all geodetic heights was assumed for every simulation
investigated here. Since the overall effect on the origin of the reference frame depends
fundamentally on the worldwide distribution of points, it is appropriate then to inquire as
to what will be the total origin displacement if networks with various station arrangements
are considered. By comparing the initial (‘true geocentric’) set of coordinates with the
corrected (biased) ones through a least squares three-parameter similarity transformation,
the translation components of the new origin with respect to the true reference system can
be determined.
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Table 2. Apparent shift of origin in simulated networks caused by an error dhe = —5.27 m in every
station due to negligence of the contribution of a scale change 65 = —0.827 ppm to the semimajor axis.
Shifts are given in the sense ‘true’ system to ‘biased’ system.

] | |
| { Number of stations participating { Shifts |
! Net\;orkl | |
| number | | e==90° ¢=-60° 6=-30° =0 ¢=30° $=60° $=90° | Ax Ay Az |
f | Total | A= 60° Al= 36° AA=30° AA=36° AA=60° | m m m i
| l | { |
i 1 | 46 ) 1 6 10 12 10 6 1 | .0 .0 0.00 |
| | | | |
i 2 | 45 ) 0 6 10 12 10 6 1 | 0 0 -0.12 |
| [ | { |
! 3 | 39 | 0 0 10 12 . 10 6 1 | .0 .0 -0.84 ]
| l 1 1 l
I 4 } 29 | 0 0 0 12 10 6 1 | 0 o -2.03 )
| | i i |
| 5 ] 17 | [} 0 0 [ 10 6 1 l' 0 0 -3.47 |
| | | | i
| 6 | 71 V] 0 0 V] 0 [ 1 | [¢] 0 -4.66 |
| | | | {
| 7 | 1 ) 0 0 0 0 0 0 1 | 0 0 -5.27 |
| l | | |

Before reporting any results, and in anticipation of more complex verifications using
actual Doppler networks, the Az origin shift dependency in latitude distribution is
investigated. Table 2 depicts the results from several imaginary networks with stations
symmetrically located around latitude belts over the globe. Note that parallels with stations
are sequentially omitted from each solution, one by one, starting from the south pole, in
order to identify the contribution of southern sites to the total z-shift.

Intuitively, if we have a network of n points rigorously balanced over the Earth (i.. the

Network A:[J& ®; Network B:—+8&O; Network C:0O;Network D:[]J.

gc;,1ao° —~150° —120° -90° -80° ~-30° -0O° 30° 80° g0° 120° 150° 180°
h h : r > 5 3 90

[ T e e T I O I O

O] :
: [ ]
.................... S
L i il
d I +
[ PP R SPPPIN D ............................................................
O

R T T 0 0 T T A Y
—180° —150° —120° —90° -80° =-30° -0° 30° €0° 90° 120° 150° 180°
Figure 2. Location of different Doppler stations used in Table 3.
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points are symmetrically distributed with respect to the xy-, yz- and zx-planes), in spite of
the station heights being erroneously corrected by the constant bias dh,, no translationary
components will result in any direction (i.e. Ax =Ay=Az=0). This is numerically
corroborated by network number 1 of Table 2. As the stations are subsequently removed
from this original simulated geometry in a parallel by paralle]l fashion (starting from the
south pole), the Az origin shift rapidly increases. It reaches its maximum when only one
station is left at the north pole. In this situation the apparent Az-origin shift equals, as
expected, the dh, height error. It is perhaps worth observing that in this last case a change
in the station ellipsoidal height will be exactly equal to a change in the corresponding
geodetic z-coordinate,

Let us now envisage a transformation in the sense geocentric -~ Doppler (geodetic) and
assume that this single station is erroneously corrected by dh, =—5.27m; then
ZDoppler — Zgeocentric = A2 = dhe = —5.27 m. The foregoing result implies that the Doppler
origin (really the xy-plane) is shifted up by 5.27 m, whereas the ground station (physically
attached to the crust) is not affected by translations in the x- or y-directions (i.e.
Ax=Ay=0,Az=-5.27 m).

To complement these conclusions a total of four different Doppler networks (see Fig. 2)
have been subjected to a similar line of reasoning and computation:

(A) A network of 75 Doppler satellite ground stations providing data for the development
of WGS72, as presented in Seppelin (1974a).

(B) The combined TRANET and OPNET networks monitoring at one time the Precise
Ephemeris of the Navy Navigation Satellite System (NNSS), as reported e.g. by Anderle
(19764, b). This network consists of 23 (19 + 4) stations.

(C) The OPNET network monitoring the Broadcast Ephemeris. This network consists of
four stations, e.g. see Anderle (1976a,b).

(D) A network of 29 stations assumed colocated with the National Oceanic Atmospheric
Administration (NOAA) BC-4 network.

Table 3. Apparent origin shifts of several Doppler networks caused by introducing a dh error of —5.27 m
in all stations, due to negligence of the contribution of a change of scale 65 = —0.827 ppm to the semi-
major axis.

Number of stations participating Shifts
NETWORK G tric — Doppler
Total -90°<9<-45° -45°<($<0° 0°¢<45°  45°¢$£90° Ax Ay Az

| ]

l |

| I

j ]

l |
A. Doppler/WGS72 ] 75 4 21 36 14 | 0.08m 0.78m -1.30m
[Seppelin,1974al { |

| |
B. TRANET/OPNET | 23 1 5 10 7 { 0.11m  0.59m -1.90m
{Anderle,1976] | )

| |
C. OPNET | 4 0 0 3 1 ] 1.35m 3.22m  -3.12m
[Anderle,1976] | |

| )
D. BC-4 { 29 4 12 10 3 {-0.31m 0.12m 0.06m

J )
Note. The formal standard error of the translation parameters is equal to the formal standard
errors of the station coordinates divided by the number of stations used in the similarity

transformation (uncorrelated coordinates were assumed)



648 T. Soler and B. H. W. van Gelder

Table 3, computed using equal weights for all stations, unequivocally shows the
dependence of Az on the point distribution. Notice that the main influence on the Az shifts,
as also proved by Table 2, is determined primarily by the proportion of sites with ¢ > 45°
with respect to stations with ¢ < —45°. The OPNET network, being situated entirely in the
United States, also suffers shifts in the x- and y-directions. A significant Ay shift correlates
rather well with an assumed error dh, at the American stations all located in the quadrant
between 180°W and 0°.

The tabulated examples of Tables 2 and 3 convincingly illustrate that failure to take
" rigorous account of scale changes in coordinate transformations involving different reference
ellipsoids may cause apparent origin offsets of reference frames, and that these offsets are
very much dependent on the stations’ geographic pattern.

In our view, the extent to which these consequences are applicable to the z-bias between
the Doppler and geocentric reference frames as determined by, e.g. satellite laser ranging,
will have to be re-examined by the agencies responsible for the Doppler coordinate solutions,
The location of Doppler tracking stations over the Earth and the weight of each individual
station in the overall Doppler network adjustment will largely determine the degree to which
this z-bias can be cured if errors of the type dh, are present.

Consequently the geodetic heights of the fundamental network of stations tracking the
NNSS satellites and defining the orbital parameters of the precise ephemeris may have been
altered in principle by some value dh,. This bias will translate into a bias in the coordinates
of the tracking stations, likewise the computed orbital ephemerides and surely the Doppler
or GPS positions resulting from observations to satellites referred to the WGS72 system.

It is conceivable that the initial configuration of the Doppler tracking network generating
the ephemerides has been modified or changed over the years for convenience. This may
result in small differences in z-shifts, mainly dependent on the range of epochs used when
applying the seven parameter similarity transformations between two sets of observing
stations, even under the restrictive assumption of a unique network of Doppler receivers.
Another possibility postulated by Tscherning & Goad (1985) but deserving a closer scrutiny
in years to come, is the correlation between small height variations and solar activity. These
changes are not significant enough to substantially affect the origin shifts, although they
may influence the Doppler scale when compared with other space systems. Similarly, the full
influence of GM on the scale of the Doppler orbit, which in turn may affect the scale
imposed on the station coordinates, should be carefully investigated. It should be stressed
here that Doppler solutions using different GM constants will result in sets of Cartesian
coordinates with different global scale. This in itself, as discussed before, should not greatly
affect the heights. Only when transformations between curvilinear coordinates are
performed neglecting this GM induced scale change, a height bias will be introduced.

4.1 GRAVIMETRIC ANALYSES AND THE Z-SHIFT

Several investigators have presented different interpretations regarding the geocentricity of
the WGS72 systems, despite having followed conceptually the same methodology:
comparisons between Doppler and gravimetrically derived geoidal heights. Before
attempting to judge the comparative merits and the reasons for the discrepancies of each
individual solution, some background information would appear to be pertinent. When
undulations from two different systems (for simplicity called old and new) are compared, it
is possible to write

Npew =Noia + No + dN, 4.1
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where (Heiskanen & Mortiz 1967, p. 101)

N, = (G5M/Ry) — (SW/y). 4.2)

From the basic relationships N=h — H (Heiskanen & Moritz 1967, p. 187) it immediately
follows (H is a physical quantity and thus ellipsoid independent)

dN=dnh=(3.1). 4.3)
Substituting the above expression into equation (4.1) we have

Niew = Noig + Np + c0os ¢ cos AAx + cos ¢ sin Ay + sin ¢Az + AN, (4.4)

where (assuming no rotations, i.e. §¢ = §y = 0)

AN=(aW+N)8s — Wa +a(1—f) sin® g5 f/W (4.5)

N, and AN are (respectively) the physical and geometric contributions to Ng;4, due to
differences in mass, potential, scale, semimajor axis and flattening between the two reference
ellipsoids to which the old and new undulations refer. .

Next, introducing the notation Ny = Ny + AN we finally arrive at the form preferred by
most investigators

Nnew — No1a = cos ¢ cos MAx + cos ¢ sin AAy + sin ¢Az + N,. (4.6)

The above equation can be used as a mathematical model to compare undulations based
on different ellipsoids through a least-squares adjustment where the possible shifts
(Ax, Ay, Az) and N, may be selected arbitrarily as unknowns. N, surely will absorb any
uncorrected contributions to the undulations not accounted for on the left side of equation
(4.6). For example, if on the left side of the equation, uncorrected undulations referring to
two ellipsoids differing only in size and shape are used, then after the adjustment, N, should
be nearly equal to the contribution of the quantity AN = —W8q + a(1 — f) sin? POfTW,

Although this is by no means essential, attention is restricted in the remainder of this
section to the case SM =8W = 0 (the two ellipsoids defining Ny34 and N,,.., have the same
mass and potential). Furthermore, discussion is limited to the long wavelength geoidal
information deduced exclusively through a spherical harmonic expansion with potential
coefficients belonging to various earth models. No contribution from local surface gravity
is implied. '

Historically we should commence by mentioning Anderle (1974), who was the first to
attempt a comparison between Doppler and gravimetrically derived undulations. His logic,
strictly speaking a local spherical approximation, was based on the analysis of differences
between two (Doppler and gravimetric) radius vectors at each geoidal point. One vector was
obtained by subtracting the mean sea level (MSL) height of the benchmark from its Doppler-
derived ‘geocentric’ distance. The other radius vector was determined by adding the
ellipsoidal distance of the station to its undulations as derived from one of the Smithsonian
Astrophysical Observatory (SAO) Standard Earth (SE) models, specifically the SE II model.
Thus in essence he applied equation (4.6) with 8W =M = 8¢ = §f = 65 = 0, The explanation
of why he found practical geocentricity of the Doppler system is based on the fact that he
included only reduced observations from receivers pertaining to the BC-4 network, which is
almost symmetrically balanced. This was also corroborated by our own calculations (see
Table 3, network D).

Rapp & Rummel (1976) expanded Anderle’s idea adding rigor to the technique. Their
method became standard and later was emulated by a number of researchers. Essentially
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they implemented equation (4.6), where N,ja Was obtained using NASA’s Goddard (Space
Flight Center) earth model number eight (GEM8). Ny, was computed from Doppler
Cartesian coordinates initially scaled by 1 ppm and then converted into curvilinear geodetic
coordinates (X, ¢, ) using the same ellipsoid as the Nyjq undulations. Thereafter, using
N =h — H, the Doppler undulations were determined at stations with known orthometric
heights. Because all undulations refer now to the same ellipsoid (8 =8 = 0), having the
same potential and mass (§W=5M= 0), the adjusted parameter N, will have no contri-
bution from Ng(No = 0). Notice, nevertheless, that there still remains No= AN = (aW + N)&s
— aWss. Though an attempt was made by Rapp & Rummel to reduce both systems to a
common scale [thus the term (aW + N)&s was compensated for], the discussed effect of &s
on the semimajor axis was not taken into consideration, and therefore inadvertently it
remained uncorrected on the left side of equation (4.6). Hence, the resulting adjusted value
of N, on the right side of the equation corresponds primarily to the effect of the term
dh, = aWss. This is the value obtained by Rapp & Rummel, Ny = — 6.36m. Again, because
they utilized only points belonging to the spatially quasibalanced BC-4 network, no major
Az shift resulted.

The influence of Ny on solutions of this type was clarified by the work of Schaab &
Groten (1979), where a comparison between geoidal undulations of the GEM8 with other
geopotential models was analysed. The main significance of their research was the selection
of an exact global distribution of points spaced 10° x 10°. When undulations referring to two
different earth models (GEM7 and GEMS) defined by the same ellipsoid
(6a=38f=08s=8W=35M=0) were compared, the resulting vaiue of N, and the three shifts
were as expected all nearly equal to zero.

A variation of Rapp & Rummel’s method was revived by Grappo (1980). He compared
Doppler derived undulations obtained by the conventional equation N=# — H with
undulations computed from potential coefficients of two of the most advanced earth models
at the time: GEM10 and GEM10B. He assumed the same scale, but transformed 4 (originally
derived from the precise (x, ¥, Z)NywrLep coordinates) to the curvilinear WGS72 system by
applying Seppelin’s equation (3.5), unaware that at this stage he was introducing into the
determined Doppler heights the discussed bias of about 5 m. Naturally, this systematic
effect on the undulations must be absorbed by some parameters on the right side of
equation (4.6). Considering the fact that Grappo did include the term N, = —W8a as a para-
meter, his model really attained the best fitting ellipsoid (with semimajor axis and origin as
unknowns) to a set of points miscorrected by dhe. Conspicuously his results showed little
variation in 8a (affected by the distribution of stations as well as the difference in equatorial
radius between ellipsoids used) and as anticipated the Az shift ranging from 4.0 to 5.2 m.
Thus, although Grappo’s original results and later extensions to other earth models (GEM9,
SAO SE 111, etc.) reported by Lachapelle & Kouba (1981), appeared to give valid answers,
they seemed to be induced by the choice of parameterization and the Seppelin
transformation. Observe that if Grappo had used a Doppler network symmetric with respect
to the Earth’s centre of mass, the value of Az would not have shown any significant shift and
all disagreements would have been confined to the parameter 8. His best balanced Doppler
network consisted of 290 points, giving ‘a ratio of stations in the two hemispheres of nearly
1 to 1°. Unfortunately, this statement may be misleading because as was pointed out before,
the important factor is the ratio of the number of stations with ¢ > 45° with respect to
¢ < —45°. We presume that with 290 stations this ratio was very different from 1 to 1.

Finally, the study in West (1982) should be brought up. The finding of this work was that
when geoidal heights based on Seasat altimeter data were compared to gravimetric
undulations derived from the DOD WGS72 or GEM10B potential coefficients, a unique
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z-shift of about —2.5 m resulted. The decisive element to be accentuated here is that the
analysed altimeter data referred to orbits derived exclusively from Doppler observations
made by the combined TRANET/Geoceiver Tracking Network. Although two completely
independent, earth potential models (DOD WGS72 and GEM10B) were used, the determined
z-shift was the same in both instances. This clearly reinforces the hypothesis that the net-
work of Doppler stations tracking the satellite (in this case Seasat) is biased by approxi-
mately 2.5 m. Our own simulation shows a bias of —2 m for the TRANET/OPNET network
(see Table 3). Earlier Marsh & Williamson (1980), after basically comparing Seasat
ephemerides z-values computed at the GSFC with those independently derived at the Naval
Surface Weapons Center (NSWC), discovered an unexplained bias of about 4 m, They rightly
pointed out the possibility of a z-bias in the tracking stations generating the Seasat Doppler
orbits, commenting at the time: ‘It must be kept in mind that the origin of this apparent
coordinate system error has not been resolved.’

4.2 CORRECTING INDIVIDUAL STATION BIASES

Transformation of curvilinear coordinates neglecting the term aW8s when changing geodetic
datums with different scales corrupts the geodetic heights by dh,. There are indications
(Anderle 1976b) that some of the Doppler tracking station heights were changed before
1972 and may have been inadvertently biased by a certain amount of dh,. Because most of
these stations are in the northern hemisphere the overall effect will be the introduction of a
positive bias in the z-values of the computed ephemerides. As a consequence the resultant
z coordinate determined by any Doppler receiver on the surface of the Earth will be also
biased and a z-shift appeared on every similarity transformation afterwards.

To remedy this z-bias problem now, and contrary to what intuition may dictate, all the
z-coordinates of the Doppler stations should not be corrected by a certain constant value
Az (e.g. the least squares solution of a certain sample of stations). This approach, as will be
seen next, does not solve the bias problem and generally distorts the z coordinates (or
geodetic heights) of stations in the southern hemisphere.

An error dh, in the geodetic heights of any arbitrary station i will translate to an error
dz; in the corresponding z-coordinate, equal to
dzi = dhe sin ¢i' (4.7)
This is graphically displayed in Fig. 3(a) which shows that the maximum error occurs at the
poles, affecting equally geodetic heights or z coordinates. Represented in Fig, 3(b) are the
corresponding errors dz for an assumed arbitrary set of points with various geodetic latitudes
primarily located in the northern hemisphere. Consequently the least squares (i.e. average)
solution of the z-shift will be, as presented in the figure, a line below and parallel to the ¢
axis, resulting in a negative value for Az as corroborated by experimental evidence.

If the Doppler reference frame is redefined by shifting all stations by the constant
amount Az, then the following residual bias at each station will be left
d2¢i = dhe sin o; + Az, (48)

Thus, although intuitively it may be thought that a simple Az correction with opposite
sign will take care of any errors introduced by dh,, this is clearly not the case, Since the Az
shift is dominated by the stations in the northern hemisphere, the applied Az will largely
compensate the dh, errors only in the northern hemisphere, Because the stations below the
equator are a minority, the applied Az correction will even enlarge the error already
introduced by dh, in the coordinates of the southern stations (in other words the Az
correction goes in the wrong/opposite direction for the southern stations). This is pictorially
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illustrated in the diagram of Fig. 3(c). Observe that in theory only the stations (if any) along
a single parallel of latitude will be rigorously corrected by this method.

The only rational solution should be that the geodetic coordinates of the fundamental
network of stations tracking the Doppler satellites and defining the precise ephemerides be
corrected ‘to their original values (before their heights were changed). Therefore the actual
bias dh, (a function of the selected scale factor change §s) already applied to the station
positions should be known in order to properly correct the coordinates of each individual
point using equation (4.7). An alternative approach will be to recompute rigorously (e.g.
using mobile SLR) the coordinates of the basic tracking network. With newly generated
geocentric ephemerides, the location of a station with respect to the Earth’s centre of mass
can be determined at any Doppler or GPS receiver site.

5 Conclusions

Among the most crucial problems presently confronting the geodetic and geophysical
communities, the proper definition (and materialization) of conventional inertial and
terrestrial systems (frames) is singularly important. The impact of accurate geocentricity,
scale and orientation of such systems on geodynamic research is fairly obvious. Obstacles
to be circumvented when defining and materializing coordinate systems are hinted at by
Mueller (1985), who stresses the need for international action in this matter and encourages
viable recommendations soon,

Scaling, the main topic of our presentation, deserves supplemental elaboration, When a
geodetic reference system (GRS) is defined (see for example Moritz 1984), although this is
not explicitly specified, it is none the less implied that the length of the adopted equatorial
radius does not refer to an ‘ideal’ scale unit (e.g. the light-based meter standard) but rather
to the best scale which scientists are able to reproduce by means of present geodetic
measurements. Scaling methods in geodesy have been greatly improved since the
rudimentary French ‘toise’ was selected by the Lapland and Peru expeditions in the
eighteenth century. Recent important advances in time-keeping combined with accurate
modern knowledge of the speed of light and the computerized instrumental sophistication
of our days have achieved baseline precision beyond the threshold of ordinary applications
(Clark et al. 1985). Even so, empirical evidence indicates minor discrepancies in scale
between different observational techniques (e.g. 0.04 ppm between SLR and VLBI
according to Boucher & Altamimi 1985). It is known that values of (x, ¥, z) geocentric
coordinates can be determined using SLR techniques, nevertheless, they must be scaled
accordingly, if something other than the SLR inherent scale is adopted as the ‘reference
scale’. Actually, the Earth’s centre of mass is unambiguously known through the results of
the SLR observations only after scaling the coordinates in accordance with the adopted
global reference scale.

Although VLBI technology and methods, because of their peculiar characteristics —
accuracy, reliability, long-term stability and cost-effectiveness (Carter, Robertson & MacKay
1985) may be the best suited at this time to establish the orientation of the conventional
inertial and terrestrial systems, the adoption of a global (‘universal’) scale needed in all
geodetic work still requires further studies to conclusively prove which one of the two
logical candidates (VLBI and SLR) will reproduce better the ‘ideal’ unit of length. Some
concerns about scale differences between SLR and GLBI solutions were alluded to in
Tapley, Schutz & Eanes (1985) where several unconfirmed possible causes were enumerated,
although Kolenkiewicz, Ryan & Torrence (1985) did not find any significant scale difference
between VLBI and SLR baseline solutions.
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In summary, though proper adoption of a geodetic global scale may still be a premature
enterprise, nevertheless when transforming existence geodetic datums, since generally their
scales will differ, the correction abs to the semimajor axis, amply examined in this paper
should be applied consistently. It is vital to realize that current transformations of curvi-
linear geodetic systems with different scales are not always performed appropriately and this
practice may still continue undetected.

Finally, we would like to conclude by emphasizing the immediate priority and attention
that should be given to the selection and adoption of a ‘global reference scale’ derived by
any convenient space technique whenever realization of terrestrial reference frames are
discussed. Only then can a complete interrelation between different geodetic and/or geo-
physical products, inferred from various methods (GPS, SLR, VLBI), be rigorously
ascertained.

Acknowledgments

Discussions held with L. D. Hothem of National Geodetic Survey (NGS), A. E. Carlson of
Defense Mapping Agency, Hydrographic Topographic Center (DMAHTC), and C. Boucher of
the Institut Géographique National (IGN) in Paris are sincerely acknowledged. The authors
are grateful to C. C. Goad of Ohio State University for helpful comments about the original
manuscript.

References

Andetle, R. J., 1974, Transformation of terrestrial survey data to Doppler satellite data, J. geophys. Res.,
79,5319-5333.

Anderle, R. J., 1976a. Error model for geodetic positions derived from Doppler satellite observations,
Bull. Geod., 50,43-717.

Anderle, R. J., 1976b. Point positioning concept using precise ephemeris, Proc. Int. Geodetic Symp.
Satellite Doppler Positioning, pp. 47-75, Defense Mapping Agency, Washington, DC.

Bomford, G., 19.80. Geodesy, 4th edn, Clarendon Press, Oxford.

Boucher, C. & Altamimi, Z., 1985. Towards an improved realization of the BIH terrestrial frame, Proc.
Int. Conf. Earth Rotation Terr. Ref. Frame, pp. 551-564. Department of Geodetic Science and
Surveying, Ohio State University, Columbus,

Burfa, M., 1966. Fundamentals of the theory of geometric satellite geodesy, Trav. Inst. Géophys. Acad.
Tehée. Sci., 241, Ceskoslovenskd Akademie V&d, Prague.

Carter, W. E., Robertson, D. S. & McKay, J. R., 1985. Geodetic radio interferometric surveying:
applications and results, J. geophys. Res., 90, 4577—4587.

Clark, T. A,, Corey, B. E., Davis, J. L., Elgered, G., Herring, T. A., Hinteregger, H. F., Knight, C. A.,
Levine, J. I, Lundqvist, G., Ma, C., Nesman, E. F., Phillips, R. B., Rogers, A. E. E,, Ronnang, B.O,,
Ryan, J. W., Schupler, B, R., Shaffer, D. B., Shapiro, I, 1., Vanderberg, N. R., Webber, J. C. &
Whitney, A. R., 1985, Precision geodesy using the Mark-IIl Very-Long-Baseline Interferometer
system, IEEE Trans. Geosci. Remote Sensing, GE-23, 438449,

Grappo, G. A, 1980. Determination of the earth’s mean equatorial radius and center of mass from
Doppler-derived and gravimetric geoid heights, Manuscr. Geod., 5,201-216.

Heiskanen, W. A. & Moritz, H., 1967. Physical Geodesy, Freeman, San Francisco.

Hotine, M., 1969. Mathematical Geodesy; ESSA Mongraph No. 2, US Department of Commerce, National
Oceanic and Atmospheric Administration, Rockville, MD.

Kolenkiewicz, R, Ryan, J. & Torrence, M. H., 1985. A comparison between LAGEOS Laser Ranging and
Very Long Bascline Interferometry determined baseline lengths, J. geophys. Res., 90, 9265-9274.

Kumar, M., 1972. Coordinate transformation by minimizing correlations between parameters, Rep. Dept.
Geod. Sci., 184, Ohio State University, Columbus.

Lachapelle, G. & Kouba, J., 1981. Relationship between terrestrial and satellite Doppler systems, in
Reference Coordinate Systems for Earth Dynamics, eds Gaposchkin, E, M. & Koluczek, B., pp.
195-203, Reidel, Dordrecht, Holland.



Differential scale and Doppler z-shift 655

Lambeck, K., 1969. New estimates for the relation of the North American datum to a geocentric satellite
reference system, Studia geophys. Geod., 13, 482—485.

Leick, A. & van Gelder, B. H. W., 1975. On similarity transformations and geodetic network distortions
based on Doppler satellite observations, Rep. Dept. Geod. Sci, 235, Ohio State University,
Columbus,

Marsh, J. M. & Williamson, R. G., 1980. Precision orbit analyses in support of the Seasat altimeter experi-
ment, J. astronaut. Sci., 28, 345-369.

Molodenskii, M. S., Exemeev, V. F. & Yurkina, M. L., 1960. Methods for Study of the External Gravi-
tational Field and Figure of the Earth, Translation from Russian (1962), National Technical
Information Service, Springfield, VA.

Moritz, H., 1984. Geodetic reference system 1980, Bull. Geod., 58, 388-398.

Mueller, I. I., 1985. Reference coordinate systems and frames: concepts and realization, Bull Geod., 59,
181-188.

Mueller, 1. 1., Kumaz, M., Reilly, J. P., Saxena, N. & Soler, T., 1973. Global satellite triangulation and
trilateration for the National Geodetic Satellite Program (Solutions WN12, 14 and 16), Rep. Dept.
Geod. Sci., 199, Ohio State University, Columbus.

Proceedings, 1976, Proc. Int. Geodetic Symp. Satellite Doppler Positioning, vols 1 and 2, Defense
Mapping Agency, Washington, DC.

Proceedings, 1979. Proc. 2nd Int. Geodetic Symp. Satellite Doppler Prositioning, vols 1 and 2, Defense
Mapping Agency, Washington, DC.

Proceedings, 1982. Proc. 3rd Int. Geodetic Symp. Satellite Doppler Positioning, vols 1 and 2, Defense
Mapping Agency, Washington, DC.

Rapp, R. H., 1975. Geometric Geodesy, vols I and 11, Lecture Notes, published by Dept. of Geod. Sci.,
Ohio State University, Columbus. )

Rapp, R. H. & Rummel, R., 1976. Comparison of Doppler derived undulations with gravimetric
undulations considering the zero-order undulations of the geoid, in Proc. Int. Geodetic Symp.
Satellite Doppler Positioning, pp. 389—397. Defense Mapping Agency, Washington, DC.

Schaab, H. & Groten, E., 1979. Comparison of geocentric origins of global systems from uniformly
distributed data, Bull. Geod., 53,11-17.

Seppelin, T. O., 1974a. The Department of Defense World Geodetic System 1972, paper presented at
International Symposium on Problems Related to the Redefinition of North American Geodetic
Networks, University of New Brunswick, Fredericton, New Brunswick, Canada, May 20-25.

Seppelin, T. O., 1974b. The Department of Defense World Geodetic System 1972, Canadian Surveyor,
28, 496-506.

Soler, T., 1976. On differential transformations between Cartesian and curvilinear (geodetic) coordinates,
Rep. Dept. Geod. Sci., 236, Ohio State University, Columbus.

Tapley, B. D., Schutz, B. E. & Eanes, R. J., 1985, Station coordinates, baselines, and Earth rotation from
LAGEOS Laser Ranging: 1976—1984, J. geophys. Res., 90, 9235-9248.

Tscherning, C. C. & Goad, C. C., 1985. Correlation between time dependent variations of Doppler-
determined height and sunspot numbers, J. geophys. Res., 90, 4589—-4596.

Veis, G., 1960. Geodetic uses of artificial satellites, Smithson. Contr. Astrophys., 3,95-161.

West, G. B., 1982. Mean earth ellipsoid determined from SEASAT 1 aitimeter observations, J. geophys.
Res., 87,5538-5540.

Williams, F. L. & Henriksen, S. W. (eds), 1977, National Geodetic Satellite Program, Parts [ and II, NASA
SP-365, National Aeronautics and Space Administration, Washington, DC.

Wolf, H., 1963. Geometric connection and re-orientation of three-dimensional triangulation nets, Bull,
Geod., 68,165-169.

Appendix A. First and second order partial derivatives of the Cartesian geodetic coordinates
(1, v, w) with respect to the ellipsoidal parameters (g, f)

Although the values of the first order partial derivatives are available elsewhere in the
literature (e.g. Rapp 1975; Soler 1976), they are included in this paper primarily to make it
self-contained. Nevertheless, the expansion to the second order partials and their analytical
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values are explicitly given here to the authors’ knowledge for the first time,
(2) Elements of the matrix [D] in equations (2.4) and (2.5).

du/da = cos ¢ cos /W du/df = a(1 — f) sin® ¢ cos ¢ cos A/ W3
dv/da = cos ¢ sin \/W ov/df = a(1 — f) sin® ¢ cos ¢ sin /W3
ow/da = (1 — e*) sin ¢/W ow/df = (M sin®> ¢ — 2N) (1 — f) sin ¢

. 3 3
(b) Elements of the matrices 5—[D] and 5[1)] in equation (2.4)
a

0u/da* = d%/0a® = 3*w/da®> = 0
8%u/da 3f = 8%u/df 9a = (1 — f) sin® ¢ cos ¢ cos \/W?
d%v/da 3f = d*v[df da = (1 — f) sin® ¢ cos ¢ sin \/W>
3*w/da 8f = 3’w/df da = (1 — f) sin ¢ [(1 — f)? sin® ¢ — 2W? /W3
8%u/df* = (3M sin? ¢ — N) sin® ¢ cos ¢ cos \/W?
8%v/af* = (3M sin® ¢ — N) sin® ¢ cos ¢ sin \/W?
8%w/3f> = sin ¢[(1 — /)* sin® ¢(3M sin® ¢ — 4N) — WA (M sin® ¢ — 2N)] / W?



