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Linear transformations have been routinely applied in various field applications since they permit a 
straightforward geometric relationship between different coordinate systems. The most general form of 
linear transformations which is also referred to as the affine model allows coordinate transformations 
between non-uniformly dilated systems. This particular model is intrinsically useful for datum 
applications in deforming areas. In this study, a twelve-parameter 3D affine transformation is proposed 
to model the physical properties between the positional coordinates from different sets of reference 
systems. Its transformation parameters can be estimated using a novel Non-Iterative Solution for Linear 
Transformations (NISLT) algorithm. In order to illustrate the capability of the proposed approach, 
numerical analyses were performed for the coordinate transformations in two real cases: 1) a mild 
non-uniform dilatation case transforming coordinates between two continental networks, an 
International Terrestrial Reference Frame 2000 (ITRF2000) solution and its corresponding International 
GNSS Service (IGS) solution, and 2) a strong non-uniform dilatation case transforming coordinates 
between two regional networks around Taiwan based on IGS solutions at two different epochs. Results 
reveal that a significant improvement on the transformation quality can be achieved when the proposed 
procedure is implemented in modern-day datum applications, especially for those in a deforming area. 
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INTRODUCTION 
 
Transformation of coordinate systems plays an important 
role in many scientific applications since it makes possible 
a unified analysis of multi-system spatial information. 
Among many types of transformations, the similarity 
transformation model is one of the most commonly used 
in view of its simple mathematical configuration and the 
easy interpretation of its parameters. Many applications of 
this model can be found in geodesy for relating a 
geocentric frame to a geodetic datum-defined frame, or 
for relating two terrestrial reference frames obtained from 
different realizations (Molodenskii et al., 1962; Badekas, 
1969; Leick and van Gelder, 1975; Soler and  van Gelder,  
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1987; Costa et al., 2008; Pino and Firkowski, 2009; 
Bașçiftçi et al., 2010). In recent years, this similarity 
transformation model has been further extended to a 
time-variant version to accommodate time-dependent 
variations of modern terrestrial reference frames (Soler, 
1998; Altamimi et al., 2002; Han and van Gelder, 2006). In 
addition to datum applications, a similarity transformation 
model is also used for relating the R

2
 image space and the 

R
3
 object space in photogrammetry (Mikhail et al., 2001), 

and for combining multiple network solutions from various 
techniques and/or at different epochs (Altamimi et al., 
2002; Han et al., 2008; Aktuğ, 2009). Despite its wide 
applicability, a similarity transformation model however 
does not provide a satisfactory solution for non-uniformly 
deformed systems, due to the fact that it allows only a 
uniform scale factor. Alternatively, an affine model 
characterizes non-uniform dilatations with different  scale  
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factors in three principal directions, and thus works well in 
many cases where a similarity model is not applicable. 
Applications of an affine model can be found, for instance, 
in photo coordinate registrations with fiducial marks 
(Mikhail et al., 2001). 

In a traditional approach, the parameters of a 
transformation model are estimated by applying a 
least-squares adjustment technique. It usually requires a 
good a-priori estimation of the parameters to initiate 
sound iterative computations. This is not often a problem 
in cases when the two systems are almost aligned. 
However, in circumstances where the coordinate systems 
are poorly aligned (for example, the transformation from a 
local datum frame to a global frame or between arbitrarily 
defined frames), it usually requires additional efforts to 
find appropriate initial values for the parameters. 
Furthermore, the iterative computations could become 
very inefficient when a large number of reference points is 
involved in a transformation.  

In order to improve the computational performance, 
recent efforts have been made to find explicit solutions of 
linear transformations as alternatives to the traditional 
least-squares solutions. In Awange and Grafarend (2003), 
it is illustrated that a closed-form solution for a 
seven-parameter similarity transformation is possible by 
means of the Gauss-Jacobi combinatorial algorithm. 
Awange and Grafarend (2005) further developed a 
Procrustes algorithm to compute the similarity 
transformation parameters without iterations. Later, 
Awange et al. (2008) proposed an ABC-Procrustes 
algorithm for a nine-parameter transformation problem 
which works well in the cases of mild anisotropy. More 
recently, Han (2010) proposed a non-iterative solution for 
linear transformations (NISLT) algorithm for the 
transformations using a seven-parameter similarity model 
or a twelve-parameter affine model. This alternative 
provides a reliable solution at the same quality level as 
the least-squares approach does, but with improved 
computational performance. All aforementioned works 
make possible a rigorous and efficient analysis for 
coordinate transformations. 

In this study, the twelve-parameter affine transformation 
is proposed for modeling the deformation behavior of 
coordinate systems. By incorporating the NISLT algorithm, 
the proposed affine model can be readily applied in 
coordinate transformations with a reliable and proficient 
performance. As will be demonstrated, the proposed 
procedure is feasible for modern-day datum applications 
and makes substantial contributions particularly to the 
cases with non-uniformly dilated coordinate systems. 
 
 
MATERIALS AND METHODS 

 
A linear 3D transformation model with uniform dilatations 
 

It is common practice to relate coordinate vectors referred to two 
coordinate frames with a similarity transformation model, which can 
be written as follows: 

 
 
 
 

' s x Rx t                (1) 

 

Where x  and 'x  are the coordinate vectors in the original and 

transformed systems, s  is a scale factor, R  is a rotation matrix 

and t  is a translation vector. It is well-known that in the 3D case, 

the rotation matrix and the translation vector can be expressed as: 
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Where 
xr , yr , and 

zr  are the counter-clockwise rotation angles 

about the three axes, and 
xt , yt , and 

zt  are the translations with 

respect to the x, y, and z axes, respectively. A total of 7 parameters 
are required for transforming coordinates between two frames using 
a similarity transformation model. 
As illustrated in Equation 1, a similarity transformation model 
postulates a unique scale between the two systems. In other words, 
only a uniform dilatation (that is, the same scale in all directions) is 
allowed when two coordinate systems are related by this model. 
 
 
A linear 3D transformation model with non-uniform dilatations 

 
In order to model the non-uniform dilatations between two 
coordinate systems, a second-rank symmetric tensor (Billington and 
Tate, 1981) is employed: 
 

11 12 13

22 23

33.

e e e

e e

sym e

 
 


 
  

E         (4) 

 

The symmetric tensor E , which is typically referred to as a 
deformation tensor can be decomposed into the product of an 

orthogonal matrix S  and a diagonal matrix Λ : 
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The diagonal elements i  ( 1,2,3i  ) in the matrix Λ  represent 

the principal dilatations in three orthogonal directions which are 

defined by the column vectors in the matrix S . In the special case 

that 3S I  (the 3 3  identity matrix), the principal dilatations are 

into the directions along the three coordinate axes. With the addition 
of this symmetric tensor, the coordinate system is allowed to have a 
homogeneous deformation with non-uniform dilatations. Figure 1 
depicts the deformation behavior on a plane of a uniformly dilated 
system and a non-uniformly dilated system. 

By substituting the deformation tensor for the uniform scale 
parameter, Equation 1 now becomes: 
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Figure 1. Visualization on a plane of two types of deformations; a uniformly dilated system (a) and a 

non-uniformly dilated system (b). 
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Figure 2. A localized reference network with respect to (a) a global frame 

and (b and c) parameter correlations for the transformation of such a 
reference network. 

 
 
 

' T   x ERx t SΛS Rx t                     (6) 

 
Where R  and t  still represent a rotation and a translation, and 

E  indicates that a non-uniform dilatation between two coordinate 
systems is present. The transformation expressed in Equation 6 is 

mostly referred to as an affine model. In a general 3D case, a total of 

12 parameters (3 in t , 3 in R  and 6 in E ) are present in this 

model. 

Molodenskii-Badekas treatment 
 

When a transformation is performed between a frame defined by a 
regional reference network and a global coordinate frame, the 
estimated transformation parameters become highly-correlated due 
to a localized geocentric distribution of reference sites. 
Consequently, the parameter estimation is of a lower quality and 

thus less interpretable. This concept is intuitively illustrated in Figure 
2. It can be seen in the figure that, for the transformation of a small 
network, scale and rotations are on a  high  correlation  with  the  
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translations. As a result, observational errors in scale or rotations 
could produce large uncertainties in translations. To amend this 
problem, the so-called Molodenskii-Badekas transformation model 
with seven parameters could be invoked (Molodensky et al., 1962; 
Badekas, 1969). This model removes the high correlations between 
the parameters by relating them to the center of the reference 
network, using a similarity transformation of the type: 
 

 ' 'Ms   x R x x t x             (7) 

 

Where x  and 'x  represent the centroids of the reference 
network in the original and transformed systems defined as: 
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The physical interpretation of the Molodenskii-Badekas model is 
identical to the seven-parameter similarity model but with the 
coordinate origin shifted to the center of the reference network 

(Turgut, 2010). After this modification, the reference network 
becomes evenly distributed and high correlations between 
parameters are thus removed. 

For the affine model, the same treatment can be applied and 
Equation 6 is then rewritten as: 
 

 ' 'T

M   x SΛS R x x t x            (9) 

 
Since only a coordinate shift is performed in the 
Molodenskii-Badekas treatment, the scale and rotation parameters 
in Equations 7 and 9 should remain the same as those in the original 
similarity or affine model (that is, Equations 1 and 6), but with a 

modified translation vector Mt  now representing the offset 

between the centroids of two reference networks. 
 
 
NISLT algorithm 

 
When a transformation model is used to relate two coordinate 
frames, the primary task is to obtain the transformation parameters. 
In the traditional approach, the least-squares adjustment technique 
is usually employed for finding the parameter estimates when the 
positional coordinates of reference points from both systems are 
known. Nevertheless, the success of a least-squares technique 

requires a good initial value of the parameters and an iterative 
process. This standard modus operandi could become inefficient 
and/or inaccurate when good initial values are not available or when 
a computation of a large network is involved. To improve the 
computational efficiency, the NISLT algorithm which was developed 
to compute the parameter estimates for general linear 
transformation models is explained in the following. In a linear 
transformation, its uniform scale can be estimated by: 
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Where ijdx  is the coordinate difference between the original points 

i  and j , 'ijdx  is the coordinate difference of the transformed 

points i  and j  and ŝ  is the estimated scale. If the dilatations 

are non-uniform, one needs to compute an intermediate matrix A   
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Where X  is a matrix formed by stacking the transposed 
coordinate differences of the original points: 
 

12

13

T

T

T

ij i j

d

d

d


 
 
  
 
 
  

x

x
X

x



 

      (12) 

 

and 'X  is a matrix formed by stacking the transposed coordinate 
differences of the transformed points: 
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In a 3D case, the dimensions of X
 
and 'X  are both ( 3k  ) 

where k  is the total number of all possible coordinate differences 

between any two points in the network (that is, 

 2 1 / 2nk C n n   ; n  denotes the number of reference points). 

Furthermore, the matrix A  in Equation 11 actually represents a 

minimum-norm least-squares solution for the matrix product ER . 
By applying the singular value decomposition (SVD) theorem to the 

matrix A , one immediately obtains: 

 
T
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Where aS  and aV  are two orthogonal matrices, and aΛ  is a 

diagonal matrix. 

Consequently, the estimated symmetric tensor Ê  can be 
computed by: 
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For both the uniform dilatation and non-uniform dilatation cases, the 

estimated rotation matrix R̂  can be obtained by: 
 

ˆ T
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Finally, the translation vectors are estimated according to the 
following two cases: 
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Figure 3. Site distribution of the CORS network investigated in case study 1. 

 
 
 
To evaluate the quality of a transformation, the post-fit 
root-mean-square error of the transformed coordinates is computed 
by: 
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With 
iε  representing the post-fit error vector for point i  

computed by: 
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RESULTS 
 
Here, the coordinate transformations of two real cases are 
investigated. The first case concerns the transformation 
between coordinates referred to an ITRF2000 solution 
and to its corresponding International GNSS Service (IGS) 
solution of two continental networks which are expected to 
be almost aligned and similar (that is, no significant 
dilatation exists). The second case involves the 
transformation between two IGS solutions obtained at two 
different epochs of the same regional network around 
Taiwan. This network spans the intersection of two 
tectonic plates. Significant surface deformations are 

expected to produce strong non-uniform dilatations in this 
region. For both cases, the similarity and the affine 
transformation parameters are estimated by the NISLT 
algorithm using the post-fit root-mean-square errors of 
solutions to evaluate the fit of the model to the data. 
 
 
Case study 1: A coordinate transformation between 
two quasi-aligned frames 
 
The data used in this case is obtained from the two 
coordinate solutions at the same epoch of the 
continuously operating reference stations (CORS), which 
constitutes a GPS network principally covering North 
America (Figure 3) and that is operated by the National 
Geodetic Survey, NOS, NOAA in the United States (Snay 
and Soler, 2008). Continuous GPS measurements are 
processed to compute weekly solutions used in the IERS 
network combination (Ferland et al., 2000). Of the two 
solutions involved here, one was produced by tying itself 
to the ITRF2000 reference stations; the other solution 
refers to the IGS05 frame and was obtained using inner 
constraints (constrain-free). There were 1215 common 
stations extracted from these two weekly solutions at the 
same epoch (GPS week 1525). The estimated 
transformation parameters are listed in Table 1. Table 1 
illustrates that the transformation parameters for both the 
similarity model and the affine model are small and almost 
identical, indicating a good alignment between the two 
solutions. Furthermore, the post-fit RMSE’s  for  the  two 
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Table 1. NISLT parameter estimates between two quasi-aligned and similar systems. 
 

Variable Similarity model  Affine model 

Scale factor (part-per-million) 1s   -0.003 

 
1 1   0.000 

 
2 1   -0.004 

 
3 1   -0.006 

      

Rotations (arc seconds) 

xr  0.0003  
xr  -0.0001 

yr  0.0003  
yr  0.0004 

zr  0.0002  
zr  0.0002 

      

Translations (m) 

xt  0.026  
xt  0.017 

yt  -0.008  
yt  -0.025 

zt  -0.000  
zt  -0.022 

      

Post-fit error (m) RMSE  0.006  RMSE  0.006 

 
 
 
models are of the same magnitude level (both are  6 
mm), meaning that the two models work equally well for 
the coordinate transformation between these two 
particular solutions. 
 
 
Case study 2: A coordinate transformation between 
non-uniformly dilated systems 
 
The data used in this second case is from a GPS tracking 
network bordering the strait of Taiwan. This network 
contains 7 continuously operated stations which are 
evenly distributed in this region (Figure 4). One solution 
was obtained at epoch 2003.2 by fixing IGS reference 
stations while the other solution was obtained by using the 
same IGS constraints at epoch 2007.1. These two 
solutions are thus expressed in the IGS reference frame 
at each corresponding epoch. Furthermore, since the 
entire network covers only a limited area of the earth 
surface, its points have a localized geocentric distribution 
with respect to the global reference frame. In order to 
avoid high correlations between parameters, the 
Molodenskii-Badekas treatment has been applied before 
the transformation parameters for the similarity and affine 
models were estimated as listed in Table 2. In Table 2, 
large transformation parameter values can be found for 
both the similarity model and the affine model. It clearly 
represents a significant reference frame variation between 
the two coordinate solutions under investigation. 
Furthermore, the post-fit RMS error for the transformed 
coordinates is about  4.1 cm in the similarity model, but 
significantly reduces to  0.9 cm when the affine model is 

applied. This statistical fact indicates a strong non-uniform 
dilatation between these two sets of solutions. For a 
physical interpretation, we further projected the three 
principal scales obtained in the affine model into a local 
geodetic E-N frame (Figure 5). 

The diagram indicates a 0.848 ppm shortening roughly 
in the E-W direction (azimuth = 98.1868°) and a 0.041 
ppm shortening in the N-S direction (azimuth = 188.1868°) 
during the time interval of the investigation (~3.9 years). 
The corresponding averaged strain rates are 0.218 and 
0.011 ppm/year, respectively. 
 
 
DISCUSSION 
 
The numerical results obtained from the two case studies 
illustrated the feasibility of the proposed approach. In 
Case Study 1, the network covers a large region in North 
America where significant continental-wide dilatations 
should not exist at the same epoch. Consequently, the 
proposed approach produced a transformation solution of 
the same level of quality as the classical similarity 
transformation did. In case study 2, when the proposed 
approach was applied to the transformation between 
non-uniformly dilated systems, it successfully captured 
the deformation signals. These deformation patterns and 
their magnitudes obtained from the affine transformation 
model are consistent with the surface velocity field caused 
by tectonic activities in this region as explicitly reported in 
previous studies (Yu et al., 1997; Hsu et al., 2003). Since 
the Taiwan Island appears to be located at the intersection 
of the Eurasia Plate and the Philippine Sea Plate, tectonic  
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Figure 4. Site distribution of the regional network investigated in 

case study 2. 

 
 
 

Table 2. NISLT parameter estimates between two non-uniformly dilated systems (with Molodenskii-Badekas treatment). 

 

Variable Similarity model  Affine model 

Scale factor (part-per-million) 1s   -0.080 

 
1 1   8.903 

 
2 1   -0.067 

 
3 1   -34.075 

      

Rotations (arc seconds) 

xr  -0.0228  
xr  -0.9672 

yr  0.0300  
yr  1.1527 

zr  0.1389  
zr  -3.1599 

      

Translations (m) 

xt  -0.009  
xt  -0.009 

yt  -0.059  
yt  -0.059 

zt  -0.097  
zt  -0.097 

      

Post-fit error (m) RMSE  0.041  RMSE  0.009 

 
 
 
activity produces significant surface deformations 
particularly along the west-northern and east-southern 

direction. A traditional similarity model is not sufficient to 
model the behavior of the geocentric frames  defined  by 
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Figure 5. Projected principal scales obtained from the affine model. 

 
 
 
the positions of terrestrial reference stations in this region. 
On the other hand, the affine model, which allows 
non-uniform dilatations in multiple directions provides a 
better fit to the actual crustal deforming behavior 
associated with station coordinates. Consequently, a 
significant improvement on the transformation quality and 
its interpretation can be achieved when this model is 
applied in tectonic active areas. 
 
 
Conclusions 
 
Recent advances in spatial information techniques enable 
high quality spatial measurements throughout every 
region of the earth. As a result, the deforming signal of a 
reference network can be precisely determined and 
interpreted. In the traditional approach, the similarity 
model is routinely applied to obtain coordinate 
transformations. However, this model fails to give 
satisfactory solutions in deforming areas where 
non-uniform dilatation is present. In this study, a 

twelve-parameter affine transformation model is proposed 
for transforming coordinates between non-uniformly 
dilated systems. Its parameters can be estimated by the 
NISLT algorithm which has been proven very efficient and 
reliable. In the case of uniform dilatations, the affine 
model works equally well as the traditional similarity 
model does. On the other hand, the affine model 
produces a better fit to the behaviors of a deforming 
coordinate system with the added advantage of attaining 
a more realistic physical interpretation. A significant 
quality improvement can be achieved when this 
twelve-parameter model is implemented in the 
transformation between non-uniformly dilated systems. 
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