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A primary output of Global Positioning System (GPS) '

post-processed data is a set of non-trivial (independent)

. vector components and their full covariance information . -

. referred to. a. specific local Cartesian terrestrial frame -
(e.g., ITRF, WGS84) and epoch. It is important to recog- -
" “nize that when GPS-determined vector components are
' szmultaneously combined into 3D geodetic network ad- '

justments they should always refer to a common coor-

. dinate frame and epoch. This paper uses geometric con- .

cepts to formulate rigorous matrix transformations to
correct vector components for changes in coordinate sys-
tems, secular displacements due to plate rotations, and
antenna centering and/or height measuring errors. Fi-
nally, the associated variance-covariance matrix of the
transformed vector components is derived. © 2001 John
Wiley & Sons, Inc.*

INTRODUCTION
. PS-determined vector components obtained

using relative static observations between so-
called base (reference) and remote stations are gener-
ally grouped by common observing periods termed ses-
sions. Attached to each particular session are the date
when the observations were taken and the starting and
ending GPS time of the observing span. All components
of these 3D spatial vectors are referred to a local (topo-
centric) frame which is parallel to the terrestrial (Earth-
fixed) geocentric reference frame defined by the precise

ephemeris (e.g., ITRF97, WGS84) selected by the pro-
cessor at the reduction stage. The epoch of this frame,
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and actually of the GPS vector components themselvés,

..is the mean epoch of the sessian observation span,
‘which is always designated by a year and its fraction
" (e.g., 11" 42™-UTC, March 20, 2000 = 2000.2172).

In order to rigorously combine GPS vectors ob-

served at different epochs into a 51multaneous least
" squares adjustment at epoch ¢, all vectors belonging to
“the 3D network must first be transformed to a common
“epoch and coordinate frame. Furthermore, due to the:

rotation of the plate on which the GPS stations are lo-
cated, the geocentric positions of the two points defin-

- ing each vector have changed since epoch t, when the

original GPS observations were taken, to the epoch ¢
selected for the 3D adjustment. The influence of plate
rotations on GPS vectors processed at different epochs
cannot be ignored if accurate GPS results are expected.
The relative motions between points along subduction
zones could be as large as 24 cm/yr (Bevis et al., 1995),
the fastest crustal motions yet observed, which are eas-
ily detectable using modern GPS techniques. However,
none of the transformations detailed here are addressed
in standard GPS text books (e.g., Leick, 1995; Hofmann-
Wellenhof et al., 1997). Soler (1998) initially presented
equations to transform vector components between
two arbitrary reference frames from epoch ¢, to epoch ¢
by taking into account their differences in orientation
and scale, as well as the motion of the plates where the
points are located. Since the vector components are al-
ways given with respect to local terrestrial frames with
origin at the base station, the possible shifts (T, T, T)
between the origins of the various conventional geocen-
tric frames do not even enter into the formulation. Nev-
ertheless, previously undetected small displacements
3x, 8y, and 8z, along the three Cartesian components,
caused by possible antenna centering and/or height

Densifying 3D 6PS Networks 27



measuring errors, could have been discovered when the
station was reoccupied at epoch . This makes the po-
sition of the antenna at time ¢ not exactly the same as
that at time &,. An extreme case of this problem could be
the misidentification of a site mark involved in two sur-
veys carried out at epochs £, and ¢,

This situation is more common than it appears at
first glance. Until recently there was not total agreement
among GPS users on which point should be selected as
the primary reference point on an antenna when pro-
cessing carrier-phase observables. It was general prac-
tice not long ago to assume that the L1 phase center was
the best point to tie the observations to the site, usually
defined by a brass disk or reference mark. This thinking
has changed in recent years and currently the “antenna
reference point” (ARP), which is physically located at the
geometric center of the bottom surface of the antenna,
is considered the logical reference point of the antenna.
The main argument favoring this preference alludes to
the fact that the spatial position of the L1 phase center
is not a well-defined electronic point, since it changes
position as a function of the incoming GPS signal and
the electrical characteristics of the antenna. This was
empirically corroborated as a result of several investi-
gations that modeled antenna-phase-center patterns
(e.g., Mader & MacKay, 1996; Meertens et al., 1996;
Rothacher & Schir, 1996). Failure to account for an-
tenna-phase-center variation can lead to errors of up'to

10 cm in height when processing GPS data for a baseline -

involving two different antenna types.
Another term frequently quoted in GPS literature is
that of "anter’mé parameters.” This applies to the various

‘constants péculiér to each individual antenna,' estab-
lishing the relationship between the fundamental |

" hardware éiemé'nts‘, e.g., hominal phase centers L1 ‘and
L2, ARP, groui}:d plane, étc. These quantities are p;f)—
vided by the antenna manufacturer or otherwise should
be precisely calibrated by the user. The National Geo-
detic Survey (NGS) has calibrated most GPS geodetic
antennas using a methodology described by Mader
(1999). Diagrams of GPS antennas and their calibrated
parameters can be accessed at the following Web ad-
dress: http://www.grdl.noaa.gov/ GRDL/GPS/ Projects/
ANTCAL/.

One clarification is in order, the ARP is not neces-
sarily the “station reference point (SRP).” The SRP is
more often than not the center of the physical disk at-
tached to a steel pipe buried in concrete in the ground
and used to permanently mark the location of the sta-

tion. In classical geodesy and/or surveying practice, the
SRP is traditionally the so-called “monument.” This is a
logical choice considering that it is the only remaining
permanent marker once the observations are com-
pleted and the antenna replaced or removed from the
site. Thus, when a permanent mark is available, all GPS
observations should be reduced to this mark. However,
many GPS “fiducial” stations do not have ground marks
per se and, consequently, the ARP is assumed to be
coincident with the SRP. If that is the case, the antenna
height, i.e., the distance between ARP and SRP, is zero.
The term “fiducial” is loosely applied to name continu-
ously operating GPS sites whose RINEX2 data are made
available electronically to the GPS community. Ex-
amples include the NGS Continuously Operating Refer-
ence Stations (National CORS) network (Snay & Weston,
1999) or the International GPS Service (IGS) global net-
work of permanent GPS trackers [http://igscb.jpl.
nasa.gov]. All fiducial stations provide access to station
logs where information about its occupation history is
available. This includes the different type of antennas
used during the years, the adopted antenna constants,
ARP height over the mark if any, ties to nearby points at
the site, etc.

THEORY

Soler (1998) followed an algebraic reasoning to obtain

- rigorous transformation of GPS-determined vector

components between coordinate frames and epochs.
However, the influence of antenna centering and/or
height setup errors were not discussed. This was ex-
panded in Soler et al. (1999), although no equations to :

. determine the variance-covariance matrices of the
transformed vector components were presented. In
. contrast, thé present paper introduces a novel.rigorous
» matrix solution strictly based on geometric concepts,
. followed by general equations that incorporatethe vari-

ance-covariance matrix of transformed vector compo-
nents. '

Figure 1 shows the basic notation convention
adopted through this work to identify vector compo-
nents. Assume a base station A and a remote station B
defining a GPS vector between points _A) and B observed
at time ¢,. The components of vector AB will be denoted
in matrix form by the column vector {Ax(t,)} or explic-
itly:

Ax(ty) Xp(to) — x4(1o)

ANty) ¢ =9 V5(to) — yalto) 1)
Az(ty) zg(to) — z4(ty)
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their explicit mathematlcal model.

The same logic will apply to any another vector, eg.,
~ between B and C except that, as Figure 1 shoWs, the
local terrestrial frame- at B is assumed parallel to the
‘ local frame at A ngorously speakmg thrs is only true if '

the vectors AB and ]3_6 were observed dunng the same
session. If, for example, vectors AB and Ei’: were mea-
sured on different GPS campaigns, their componenrs do
not refer to the same epoch; furthermore; fhey may not
even refer to the same coordinate frame. Figure 1 also
shows the well-known mathematical model typically
used on GPS networks least-squares adjustments. The
observables are the vector components at some specific
epoch, say f,, and the parameters (unknowns) are the
coordinates of the points involved at the same epoch.
Recall that because some vectors are reobserved, or be-
cause there are many vectors starting or ending at the
same station, the redundancy of the adjustment is as-
sured.

Assume now that one wants to transform vector
components from frame ITRFyy at epoch f, to frame
ITRFzz at epoch t. This transformation could be desig-
nated symbolically by the mapping ITRFyy(s,) —
ITRFzz(#). Assume further that one wants to correct for
antenna errors (decentering and/or height) detected at
epach t, long after the original GPS vector components
were processed and archived. According to Figure 2 the
assumed antenna displacement errors are represented
by vectors A_i)\’ and Iﬁ)B’ at points A and B respectively.

"Notice that in the figure, all vectors referred to epoch ¢,
are drawn using the same line style (broken line sepa-
rated by two points). Similarly, one also may assume
antenna collimation and height errors at time ¢ They
are represented in the figure as vectors A_;\" and B’ B”

FIGURE 1. Vector components and time t, and

FIGURE 2. Transformation of vector compo-
nents between two frames at time L, and t.

Consequently, the original components of vector A%
processed a_r)ld archived at epoch ¢, should be repiaced
by vector A"B” at epoch ¢ (see Figure 2) before itis com- -
bined in a network adjustment with other new GPS vec-
tors measured at t. As Figure 2 deplcts, the frames at t,
and ¢ are assumed not parallel. Moreover, they may
even have different scales. From the frgure and by
simple geometrlc and vector consnderatlons, one can
arrive at the following equality:

AA () -

AB ()=~ AA” (1,) + AB(1;)+ BB (i) + BB (1)
@)

Grouping terms by epochs,

AB'(1)= AB (1) + BB (1) ~ A (1) + BB () —Z'Tv??s)
To distinguish between the vector components,
previously denoted with the symbol A, and the antenna
displacements—i.e., misalignments and/or height er-
rors—the latter will be identified, as mentioned above,
with the symbol 8. Figure 2 also shows that, in the most
general case, for each vector A—ﬁ there are four possible
errors associated with antenna displacements. These
may be located at the two points A and B, each of them
spanning two possible epochs f, and t. Thus, in addition
to the epoch, it is important to identify the point in
question, e.g., for the displacement AA’ at epoch ¢, the
compact vector matrix notation {8x,(z,)} will be used.
This can be written explicitly:

dx4(20) Xa () — Xa(ty)
8yalto) ¢ = Yallo) - yally) 4)
82,(1,) Za(ty) — Za(tp)
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Similar equations apply to other possible antenna
displacements at points B, A’, and B', denoted respec-
tively by {8xz(f,)}, {8x,4.(}, and {xz(#}. However, in
practice the antenna displacements at points A, B, A’,
and B’ are known along local geodetic horizon frames
(east=e, north=n, up=u). For example, assume that the
antenna at station A at epoch ¢, was perfectly centered,
but when the vectors were processed—say, more than 5
years ago—the L1 phase center and not the ARP was
used as SRP. Because the new vector at epoch ¢ refer to
~ the ARP, a correction (from L1 to ARP) must be applied
to the old vector components. Furthermore, assume for
the sake of discussion that the model of antenna used
was a Dorne Margolin T. It is known that for this par-
ticular type of antenna the ARP is located 11 cm below
the L1 phase center. Because the antenna was leveled at
the time the observations were originally collected, this
distance is aligned with the direction of the plumb line
which, neglecting vertical deflections, coincides with
the normal to the adopted reference ellipsoid. Thus, the
11 cm are actually counted along the ellipsoid normal.
Using a notation similar to Eq. (4) but referred to a local
geodetic horizon frame (e, n, 1), one can write the vec-
tor components along this frame as {e,(¢,)}, or explic-
itly for this specific example:

dex(ty) 0
Bnuty) ¢ = 0 )
LBuy(ty) =1lcm

The negative sign of the height correction is ex-

plained by the fact that the location of the ARP in Dorne

. Margolin T antennas is loc:«ifed below its L1 phase cen-
ter. Nevertheless, corrections to GPS vector compo-
nents should be expressed on a local frame which is not
local geodetic, as Eq. ) implies, but a local frame par-
allel to the geocentric terrestrial frame. The transforma-
tion from local horizon to local terrestrial frames is
achieved through the rotation matrix:

[R]=Ry(-\ — Yom)R, (¢ — Yomr)
= Ry(~-MR,(¢ — Yom)Ry(~Vom) 6)

or explicitly

—Sin\.  —cosAsing  cosAcosg
[R]=]| cosh -sinAsing sinkcose @)
0 COos¢ sing

The above rotation matrix should always be computed
at some specific point and epoch. Thus, the antenna
displacements at point A, epoch ¢, along the local ter-
restrial frame is determined from (5) according‘ to the

transformation:
dx4(t) dex(ty)
3Yalto) ¢ = [R]A’ﬂ 81 4(%) (8)
d24(t) du,(tp)

Thus, replacing the vectors in Eq. (3) by their equivalent
matrix columns after introducing the required scale fac-
tor and the rotation matrix to make the geocentric
frame at f, parallel to the geocentric frame at ¢, one
arrives at the following matrix equation:

Ax(t) 1 & -s Ax(t,)
AYD p=(1+s)| s 1 & |x Ayt
Az(t) e, -& 1 AZ(ty)
dx(1p) ax(t)
+ 9 L) +9 3N ©)
34 1ty) d2(1)
where,

dx(1o) dxp(ty) = 8x4(tp)
Sy(tp) 8y5{fo) — 8Ya(to)
52(ty) 0z5(ly) — 8z4(1p)
=[Rlp, {dex(to)} - [Rly, {Bea(np)}  (10)

and similarly,

X)) [ 8xalt)— Bxx(D

B0 ¢ =9 8ye() -~ dya(d)
30 ) | 8zg(0) - 8z,(1)

= [Rlp foes(0) - [Rly foex(0} (1)

In Eq. (9), the variables ¢, &,, and &, (expressed in
radians) afe, the differential rotations about the axes of
the ITRFyy frame required to make it parallel to ITRFzz.
Counterclockwise (anticlockwise) rotations are as-
sumed positive. The parameter s (unitless in ppvm
%1079 is the differential scale factor required to
change the unit of scale of the ITRFyy frame to make it
consistent with the ITRFzz frame. Table 1 shows the
latest transformation parameters and their standard de-
viations between geocentric frames, which realizations
were attained using the ephemerides of the GPS (ITRF
and WGS84) and GLONASS (PZ-90) satellite constella-



Transtormation parameters and their standard deviations hetween modern geocentric frames

I, T, T, €, €, €, s
cm cm cm mas mas mas ppb
PZ-90 —»
WGS84
(G873 -108.0+21.0 -27.0x21.0 -90.0<33.0 0.0 0.0 -160.0+10.0 -120.0 £ 60.0
WGS84
(G873) —»
ITRF94 896+55 6.0+55 44+54 -22+21 -0.1 £ 2.1 11222 -143+84
ITRF94 = .
ITRF96 — . :
ITRF97® 0.03+021 0.05+021 -147+021 -0.159+0900 0.263 +0.098 = 0.060 + 0.088 143+ 0.31

(Sillard et al., 1998).

NOTES. mas = milliarc second; ppb = parts per billion = 1072 ppm. (Vepoch ~1997.0 (Bazlov et al., 1999a, 1999b); ®epoch 1997.0
(Malys et al., 1997); @epoch 01-AUG-1999 (IGS e-mail #2432). The equivalence between ITRF94 and ITRF96 is mentioned in

tions. The tabulated values clearly show that the geo-
centricity of the GLONASS system is not yet aécurately
determined.

A generalization of Eq. (9) can be written introduc-
ing the velocities of points A and B at time %, denoted
by v, and v (generally given in meters per year), caused
by plate motion or any other known secular tectonic
displacement which was previously neglected. Thus, fi-
nally:

Ax(t) 1 e, -€ Ax(ty)
AN D p=(1+9)| €. 1 & |x{4§aM%)
AZ(p) g, —& 1 Az(ty)
dx(t) VB, ~ VA,
+9 L) ¢ +(t—1t) VB, Va,
32ty Vg, ~Va,
3x(1t)
+14 810 (12)
31

Predicted velocities at any location in the United
States can be obtained interactively from the NGS web
site [http:// www.ngs.noaa.gov] by clicking on “Prod-
ucts and Services” and then “HTDP—Horizontal Time-
Dependent Position.” To learn more about HTDP, the
reader can consult Snay (1999).

VARIANGE-COVARIANCE MATRIX OF THE
TRANSFORMED COMPONENTS

Usually, the final components of each vector in a par-
ticular GPS session are accompanied by their full vari-

ance-covariance matrix or, equivalently, by their stan-
dard errors and correlation matrix. This is the adopted
NGS format, the so-called GFILE, used from the early
1980s to archive processed vector components for every
GPS project. The GFILE of a typical GPS project con-
tains many sessions. Thus, to transform GFILEs be-
tween frames and epochs, not only the vector compo-
nents, but also their corresponding full variance-
covariance matrix could be transformed. The required
input values are the original variance-covariance matrix
of the vector components at f,, the variance-covariance
matrix of the rotations and scale that makes the frame at
I, parallel to the frame at ¢ and, finally, the variance-
covariance matrix of the velocities at f,. In the discus-
sion that follows it will be assumed that the antenna
displacements, if any, are errorless with no standard
errors attached to them. This is the common situation
when antenna height offset errors implicit in old field
procedures are subsequently detected or when a change
of antenna height parameters is implemented.

Because in a particular GPS session one may have
more than a single vector, the notation of Eq. (12) will
be abbreviated and extended to identify at least two
such vectors (six components) denoted with the sub-
indices i, j. Thus,

{A}:={Ax(1o)}:; {A};={Ax(z,)}; etc.
{oli={ve— v Wl ={vp-vd;; etc.

The following compact notation is introduced to
simplify the formulation as much as possible. [8R] is
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the differential rotation matrix of the transformation
between the frames ITRFyy(f,) and ITRFzz(#), namely,

[3R]=| &, 1 &, 13)

In what follows [A]; and [v], indicate skew-symmetric
(antisymmetric) matrices, respectively, of the compo-
nents of vector i and the differences between the veloc-
ities of points B and A:

0 -AAt)  ANt)
[Al=] AZf) 0 -Ax(t) (14)
| —ANL,)  Ax(ty) 0 i

[ 0
[B]z = sz -

| —(VBY - VAy)

—(1’3z - VAZ) VB, Va,

Va, 0 (g = va)

Vg, — Va, 0

' (15)

With the above notation, the Jacobian contribution
of the functional relationship (12), due only to effects of
rotations and scale, can be reduced to the following
matrix expression:

Uesli =[(1+9[[AL+ (- t)[¥]] (16)
Bx4)  [3RKA}+ (1- v}
Using the nomenclature just. introduced, the trans-
formed variance—covariance matrix of the components
of an arbitrary vector i can be written:

ZA(t)i =(1+s) [BR] EA(to} BRY + [ )i 2o Ui+ (1 + st

B BRIZ, - Syt Bup— S JORT (17)

The variance—covariance matrix of the transformed
vector components at epoch ¢ of a session with n vec-
tors will have n(3x3) diagonal blocks. An arbitrary
block i will be computed according to Eq. (17).

The cross-covariance between the components of
two arbitrary vectors i, j, respectively, between points A,
B, and C, D, can be written as follows:

EA(’){A(?),' = (1 + S)Z [89‘] EA(IQ),'A(Y())J- [SSR][ + []ss]i Ea: []es];

+(L+ 92— 10 BRI [Z0 = S p+ Zupp
- 2vBuc:":sgﬂt (18)

82 Soler

In the above equations the variance—covariance matrix
of the rotations and scale is given as usual by:

Ex Exty Exfz ExS

s, =| T Tey Teper Ten (19)
es L Uczey criz Op,s
Ussx Gsey o'sez 0‘?

while the cross-covariance of, e.g., the velocities of
points A and C is:

Q

VANVC, GAx“Cy U“A,"Cz
Tvape, (20)

YAVC, o.v AV Cy Gv AVC,

Q

_ a.
EVA"C = YAYC, YAYC,

ag

Similar logic can be applied to the other variance-
covariance matrices needed in Egs. (17) and (18). Notice
that while variance—covariance matrices are symmetric,
that is not necessarily the case for cross-covariances.
However, the following identities are fulfilled:

t B N 4 .
ZA(n;A(t),; EA(,)]A(,,,., Yoo = 2y 4es0 €LC. 21
In practical situations each session cross-co-
variances between the vector components and veloci-
ties, vector components and transformation param-

eters, and transformation parameters and velocities are
not known and were assumed zero above, i.e.,

3 attohva = SAg)es = Zosvq = €1C. = [0] 22)

If that is not the case, ‘the following term should be
added to Eq. (17):

(1 + S)[A] + [AT + (£~ &)[B] + [BY + (1 + 9[[3RK]

x[[C]+ [C’]'f (D}~ [DYTH8RI )
where: |
(A= Ues): Zesaci [ORT 24
(Bl =esli [Zesp = 2o ] [BRT (25)
[Cl=Z2aupms (26)
and



[D]= EA(to),-vA (27)

Similarly, the following expression should be added
to Eq. (18):

(t- L)1 + 5)2_[89‘][213(:0)” - zA(to)ij +Zairp ~ ZAtwc)
BRY + (1 + Yol Zaaiy; + (1= 0l Zes )y~ Zow JIBRT
+ (1 + s)[ssx][EA(to)iss + (t_ tO)[EvBes - EvAzs]][]as]_; (28)

GONCLUSIONS

This article introduces rigorous matrix equations to
transform GPS-determined vector components and
their variance—covariance matrices from one arbitrary
frame at epoch 1, to another at epoch . The methodol-
ogy presented also assumes knowledge of the velocities
of the points involved, as well as possible antenna set
_up errors. Finally, the article introduces novel accurate
transformation of vector components variance-
covariance matrices without neglecting any of the pos-
sible cross-correlations between the different param-
eters involved. ]
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