FEDERAL AVIATION ADMINISTRATION OBSTRUCTION DATA FOR ARRIVAL/DEPARTURE OF AIRCRAFT

WILLOWS-GLENN COUNTY AIRPORT

WILLOWS, CALIFORNIA-

ODS 5296

化基层 副三维研究 的复数人名德 医多克克氏征

ist EDITION

and the state of the The state of the state

> OC 5296 SURVEYED NOVEMBER 1983 3rd EDITION

建铁铁铁铁镍 \$ 医大型弹性 医乳腺 人名英格兰 医水流 医电影 医自己性性大胆管 网络格尔巴亚亚

PREPARED AND DISTRIBUTED BY
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL OCEAN SERVICE

OBSTRUCTION DATA SHEET

A new computer generated data run, called the Obstruction Data Sheet (ODS), has been developed to permit dissemination of airport obstruction survey data in a more timely manner following completion of surveys at airports. The ODS will be published as soon as possible after the survey and prior to the printing and distribution of the Airport Obstruction Chart. Thus, we expect that important survey data will be made available to users 3 or 4 months prior to the publication of the Airport Obstruction Chart.

The ODS will carry the same name and number as the corresponding Airport Obstruction Chart and will be made available to users on a one copy ODS for one copy Airport Obstruction Chart basis.

We plan to evaluate the ODS concept and format after users have gained some experience with the product.

FEDERAL AVIATION ADMINISTRATION OBSTRUCTION DATA FOR ARRIVAL/DEPARTURE OF AIRCRAFT

THE ENCLOSED OBSTRUCTION INFORMATION IS THE RESULT OF THE FIELD SURVEY PERFORMED BY THE NATIONAL OCEAN SERVICE (NOS) FOR THE FEDERAL AVIATION ADMINISTRATION (FAA) IN ACCORDANCE WITH FAA FEDERAL AIR REGULATIONS (FAR) PART 77. THESE DATA ARE FURNISHED IN ADVANCE OF THE PUBLISHED AIRPORT OBSTRUCTION CHART (OC) OF THE CORRESPONDING AIRPORT.

THIS REPORT LISTS THE OBSTRUCTIONS EXISTING AT THE TIME OF THE SURVEY.

A DIAGRAM SHOWING RUNWAY ORIENTATION AND RELATED RUNWAY DATA IS INCLUDED.

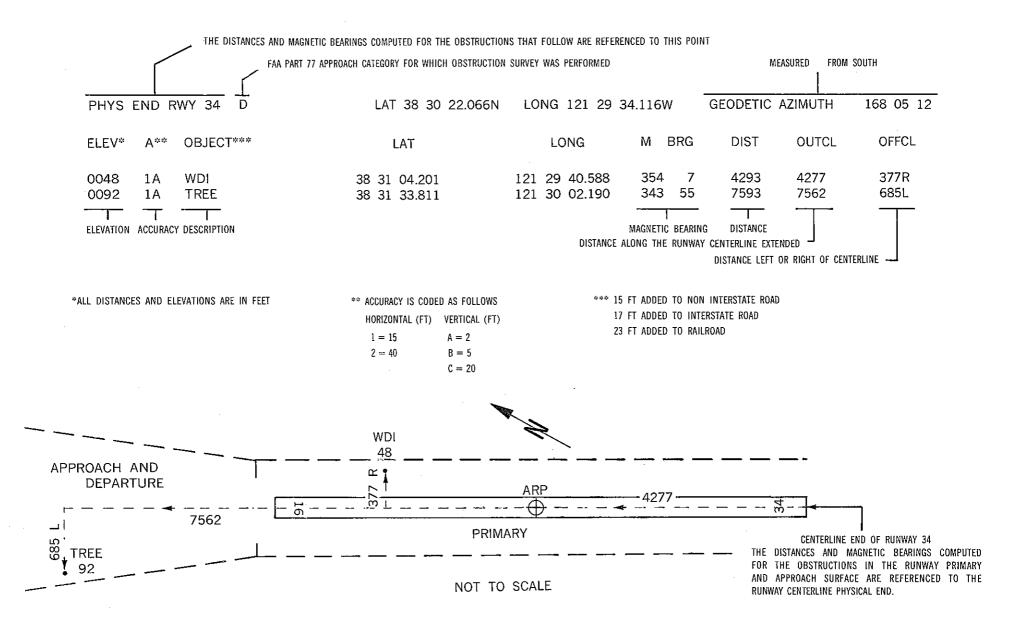
OBSTRUCTION DATA IS LISTED WITH REFERENCE TO THE ARP OR THE RUNWAY END.

OBSTRUCTIONS IN THE PRIMARY, APPROACH/DEPARTURE SURFACES ARE REFERENCED TO THE APPROPRIATE PHYSICAL CENTERLINE END OF THE RUNWAY.

OBSTRUCTIONS IN THE TRANSITIONAL, HORIZONTAL AND CONICAL SURFACES ARE REFERENCED TO THE AIRPORT REFERENCE POINT (ARP).

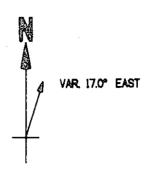
POSITIONS AND ELEVATIONS HAVE BEEN TIED TO THE NATIONAL NETWORK OF GEODETIC CONTROL.

RUNWAY	SURVEYING CRITERIA.
PIR	Precision Instrument Runway. 50:1 Slope first 10,000 FT
•	40:1 for the next 40,000 FT
D	Nonprecision Instrument Runway with visibility minimums as low as ¾ mile.
	34:1 Slope
C .	Nonprecision Instrument Runway with visibility minimums greater than
	¾ mile. 34:1 Slope
B(V)	Visual runway with visual approach only. 20:1 Slope

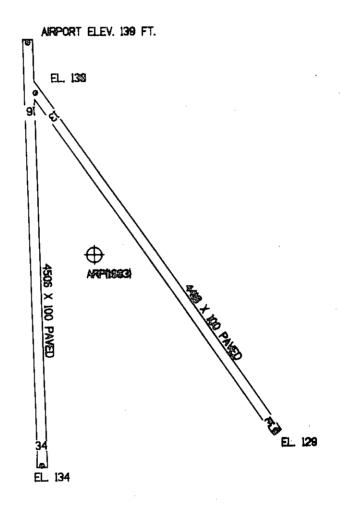

Utility runway with nonprecision instrument approach.

Utility runway with visual approach only. 20:1 Slope

A(NP)


A(V)

ANNOTATION OF SAMPLE OBSTRUCTION DATA


RUNWAY 13	CONDITION AV		LAT 39 31	16.80	4N L	ONG 122	13 7	.177	M GEODE	TIC AZIMU	TH 325	1 10
ELEV A OBJ	ECT		LAT	÷	LO	NG	М	BRG	DIST	OUTCL	OFFCL	
136 1A SIG	iN	39	30 48.003	122	12	42.706W	129	39	3489	3487	99R	
					·	•					•	
		,										
RUNWAY 31	CONDITION AV		LAT 39 30	41.02	5N L	ONG 122	12 34	1.859	W GEODE	TIC AZIMU	ITH 145	1 30
ELEV A OB-	JECT	٠,	LAT		LO	NG	M	BRG	DIST	OUTCL	OFFCL	÷
136 1A SI			30 48.003						936	931 5700	99L 46L	
194 1A TRE	E	39	31 27.084	122	13	1/.1//W	307	3 4	5720	5720	401.	
RUNWAY 16	CONDITION C		LAT 39 31	22.02	7N L	ONG 122	13 7	7.984	W GEODE	TIC AZIML	JTH 358	11 16
ELEV A OBG	JECT		LAT		LO	NG	M	BRG	DIST	OUTCL	OFFCL	
142 1A FEN	NCE POST	39	30 36.800	l 122	13	9.385W	164	22	4577	4570	254R	
140 1A GRC 137 1A GRC	DUND		30 35.9331 30 35.681		13	7.942W 4.497W	162 159		4664 4697	4662 4696	144R 125L	
142 1A FEN			30 34.871		13	4.508W	159		4779	4777	121L	•
						·						
											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
RUNWAY 34	CONDITION BV			37.51	in L	ONG 122	13 (6.166	W DEUDE	TIC AZIMO		11 17
ELEV A OB	JEC:T		LAT	· ·	LC	ING	M	BRG	DIST	OUTCL	OFFCL	
	ON OL POLE		31 23.349 31 23.961		13	4.819W 5.306W	344 343		4639 4700	4632 4695	252R 216R	
142 1A FEN 152 1A BUS	3H	39	31 26.311	V 122	13	6.141W	343	1	4938	4935	158R 304R	
162 1A POL	_E	39	31 27.815	v 122	2 13	4.346W	344	36	5092	5083	304K	

ARP 1983	LAT 39 30 5	9.346N LONG 122	12 59.125W	GEODETIC	AZIMUTH	0	Ō.	O
ELEV A OBJECT	LAT	LONG	M BRG	DIST				
159 1A LIGHT ON WSK	39 31 5.125N	122 13 2.274W	320 7	635				
177 1A TREE	39 30 54.771N	122 13 13.082W	239 36	1124				
166 1A LIGHT POLE	39 31 20.782N	122 13 3.537W	333 57	2196	•			
140 1A FENCE POST	39 30 37.442N	122 13 2.614W	170 2	2233				
167 1A POLE	39 30 37.232N	122 13 11.401W	186 16	2436				
193 1A ANT OL AIR BCN	39 31 26.972N	122 13 2.649W	337 22	2809				
303 1B OL RADIO MAST	39 31 16.141N	122 11 41.609W	57 22	6308				
289 1B ROD ON RADIO TR	39 31 47.578N	122 11 30.256W	37 58	8504				

TOUCHDOWN ZONE

RUNWAY	ELEVATION
13	139
31	133
16	139
34	136

WILLOWS-GLENN COUNTY AIRPORT
WILLOWS, CALIFORNIA
(NOT TO SCALE)